Description Dictionary Super classes Methods
A LearnerMultioutput implementation of the random forest and bagging ensemble algorithms utilizing conditional inference trees as base learners. Supports multilabel classification.
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn()
:
1 2 | mlr_learners$get("Multioutputput.cforest")
lrn("Multioutputput.cforest")
|
mlr3::Learner
-> mlr3multioutput::LearnerMultioutput
-> LearnerMultioutputCForest
new()
Creates a new instance of this R6 class.
LearnerMultioutputCForest$new()
clone()
The objects of this class are cloneable with this method.
LearnerMultioutputCForest$clone(deep = FALSE)
deep
Whether to make a deep clone.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.