mlr_learners_multioutput.cforest: Conditional Random Forest Multioutput Learner

Description Dictionary Super classes Methods

Description

A LearnerMultioutput implementation of the random forest and bagging ensemble algorithms utilizing conditional inference trees as base learners. Supports multilabel classification.

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

1
2
mlr_learners$get("Multioutputput.cforest")
lrn("Multioutputput.cforest")

Super classes

mlr3::Learner -> mlr3multioutput::LearnerMultioutput -> LearnerMultioutputCForest

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerMultioutputCForest$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerMultioutputCForest$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.


mlr-org/mlr3multioutput documentation built on Nov. 22, 2020, 1:17 p.m.