test_that("nn_tokenizer_num works properly", {
x = torch_randn(4, 2)
n_objects = x$shape[1]
n_features = x$shape[2]
d_token = 3
tokenizer = nn_tokenizer_num(n_features, d_token, TRUE, "uniform")
tokens = tokenizer(x)
expect_true(all(tokens$shape == c(n_objects, n_features, d_token)))
})
test_that("pipeop numeric tokenizer", {
po_tokenize = po("nn_tokenizer_num", d_token = 10)
graph = po("torch_ingress_num") %>>% po_tokenize
task = tsk("iris")
expect_pipeop_torch(graph, "nn_tokenizer_num", task, "nn_tokenizer_num")
res = expect_paramset(po_tokenize, nn_tokenizer_num, exclude = "n_features")
expect_paramtest(res)
})
test_that("nn_tokenizer_categ works properly", {
cardinalities = c(3, 10)
mat = matrix(nrow = 4, ncol = 2)
mat[1, ] = c(1L, 6L)
mat[2, ] = c(2L, 8L)
mat[3, ] = c(1L, 3L)
mat[4, ] = c(3L, 5L)
x = torch_tensor(mat)
n_objects = x$shape[1]
n_features = x$shape[2]
d_token = 3
tokenizer = nn_tokenizer_categ(cardinalities, d_token, TRUE, "uniform")
tokens = tokenizer(x)
expect_true(all(tokens$shape == c(n_objects, n_features, d_token)))
})
test_that("pipeop categ tokenizer", {
po_tokenize = po("nn_tokenizer_categ", d_token = 10)
graph = po("torch_ingress_categ") %>>% po_tokenize
task = tsk("breast_cancer")
expect_pipeop_torch(graph, "nn_tokenizer_categ", task, "nn_tokenizer_categ")
res = expect_paramset(po_tokenize, nn_tokenizer_categ, exclude = "cardinalities")
expect_paramtest(res)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.