#' @title Plots for Cox Proportional Hazards Learner
#'
#' @description
#' Visualizations for [mlr3proba::LearnerSurvCoxPH].
#'
#' The argument `type` controls what kind of plot is drawn.
#' The only possible choice right now is `"ggforest"` (default) which is a
#' Forest Plot, using [ggforest][survminer::ggforest()].
#' This plot displays the estimated hazard ratios (HRs) and their confidence
#' intervals (CIs) for different variables included in the (trained) model.
#'
#' @param object ([mlr3proba::LearnerSurvCoxPH]).
#'
#' @template param_type
#' @param ... Additional parameters passed down to `ggforest`.
#'
#' @return [ggplot2::ggplot()].
#'
#' @export
#' @examples
#' \donttest{
#' if (requireNamespace("mlr3proba")) {
#' library(mlr3proba)
#' library(mlr3viz)
#'
#' task = tsk("lung")
#' learner = lrn("surv.coxph")
#' learner$train(task)
#' autoplot(learner)
#' }
#' }
autoplot.LearnerSurvCoxPH = function(object, type = "ggforest", ...) {
assert_choice(type, choices = c("ggforest"), null.ok = FALSE)
assert_class(object, classes = "LearnerSurvCoxPH", null.ok = FALSE)
assert_has_model(object)
switch(type,
"ggforest" = {
require_namespaces("survminer")
suppressWarnings(survminer::ggforest(object$model, ...))
},
stopf("Unknown plot type '%s'", type)
)
}
#' @export
plot.LearnerSurvCoxPH = function(x, ...) {
print(autoplot(x, ...))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.