Description Dictionary Super classes Methods References See Also Examples
A mlr3::LearnerRegr implementing rfsrc from package
randomForestSRC.
Calls randomForestSRC::rfsrc()
.
This Learner can be instantiated via the dictionary
mlr_learners or with the associated sugar function lrn()
:
1 2 | mlr_learners$get("regr.rfsrc")
lrn("regr.rfsrc")
|
mlr3::Learner
-> mlr3::LearnerRegr
-> LearnerRegrRandomForestSRC
new()
Creates a new instance of this R6 class.
LearnerRegrRandomForestSRC$new()
importance()
The importance scores are extracted from the model slot importance
.
LearnerRegrRandomForestSRC$importance()
Named numeric()
.
selected_features()
Selected features are extracted from the model slot var.used
.
LearnerRegrRandomForestSRC$selected_features()
character()
.
oob_error()
OOB error extracted from the model slot err.rate
.
LearnerRegrRandomForestSRC$oob_error()
numeric()
.
clone()
The objects of this class are cloneable with this method.
LearnerRegrRandomForestSRC$clone(deep = FALSE)
deep
Whether to make a deep clone.
Breiman L (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi: 10.1023/A:1010933404324.
Dictionary of Learners: mlr3::mlr_learners
1 2 3 4 5 6 7 | if (requireNamespace("randomForestSRC")) {
learner = mlr3::lrn("regr.rfsrc")
print(learner)
# available parameters:
learner$param_set$ids()
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.