mlr_learners_regr.rfsrc: Regression Random Forest SRC Learner

Description Dictionary Super classes Methods References See Also Examples

Description

A mlr3::LearnerRegr implementing rfsrc from package randomForestSRC. Calls randomForestSRC::rfsrc().

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

1
2
mlr_learners$get("regr.rfsrc")
lrn("regr.rfsrc")

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> LearnerRegrRandomForestSRC

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerRegrRandomForestSRC$new()

Method importance()

The importance scores are extracted from the model slot importance.

Usage
LearnerRegrRandomForestSRC$importance()
Returns

Named numeric().


Method selected_features()

Selected features are extracted from the model slot var.used.

Usage
LearnerRegrRandomForestSRC$selected_features()
Returns

character().


Method oob_error()

OOB error extracted from the model slot err.rate.

Usage
LearnerRegrRandomForestSRC$oob_error()
Returns

numeric().


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerRegrRandomForestSRC$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

References

Breiman L (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi: 10.1023/A:1010933404324.

See Also

Dictionary of Learners: mlr3::mlr_learners

Examples

1
2
3
4
5
6
7
if (requireNamespace("randomForestSRC")) {
  learner = mlr3::lrn("regr.rfsrc")
  print(learner)

  # available parameters:
  learner$param_set$ids()
}

mlr3learners/mlr3learners.randomforestsrc documentation built on Aug. 3, 2020, 1:55 a.m.