Description Details Dictionary Super classes Methods References See Also Examples
A mlr3proba::LearnerSurv implementing rfsrc from package
randomForestSRC.
Calls randomForestSRC::rfsrc()
.
randomForestSRC::predict.rfsrc()
returns both cumulative hazard function (chf) and
survival function (surv) but uses different estimators to derive these. chf
uses a
bootstrapped Nelson-Aalen estimator, (Ishwaran, 2008) whereas surv
uses a bootstrapped
Kaplan-Meier estimator. The choice of which estimator to use is given by the extra
estimator
hyper-parameter, default is nelson
.
This Learner can be instantiated via the dictionary
mlr_learners or with the associated sugar function lrn()
:
1 2 | mlr_learners$get("surv.rfsrc")
lrn("surv.rfsrc")
|
mlr3::Learner
-> mlr3proba::LearnerSurv
-> LearnerSurvRandomForestSRC
new()
Creates a new instance of this R6 class.
LearnerSurvRandomForestSRC$new()
importance()
The importance scores are extracted from the model slot importance
.
LearnerSurvRandomForestSRC$importance()
Named numeric()
.
selected_features()
Selected features are extracted from the model slot var.used
.
LearnerSurvRandomForestSRC$selected_features()
character()
.
oob_error()
OOB error extracted from the model slot err.rate
.
LearnerSurvRandomForestSRC$oob_error()
numeric()
.
clone()
The objects of this class are cloneable with this method.
LearnerSurvRandomForestSRC$clone(deep = FALSE)
deep
Whether to make a deep clone.
Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS, others (2008). “Random survival forests.” The annals of applied statistics, 2(3), 841–860.
Breiman L (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi: 10.1023/A:1010933404324.
Dictionary of Learners: mlr3::mlr_learners
1 2 3 4 5 6 7 | if (requireNamespace("randomForestSRC")) {
learner = mlr3::lrn("surv.rfsrc")
print(learner)
# available parameters:
learner$param_set$ids()
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.