knitr::opts_chunk$set(out.width = "\\textwidth") suppressMessages({ require(LMN) require(kableExtra) }) cran_link <- function(pkg) paste0("[**", pkg, "**](https://CRAN.R-project.org/package=", pkg, ")") build_cache <- FALSE oldpar <- par()
\newcommand{\YY}{{\boldsymbol{Y}}} \newcommand{\XX}{{\boldsymbol{X}}} \newcommand{\RR}{{\boldsymbol{R}}} \newcommand{\VV}{{\boldsymbol{V}}} \newcommand{\ZZ}{{\boldsymbol{Z}}} \newcommand{\SS}{{\boldsymbol{S}}} \newcommand{\TT}{{\boldsymbol{T}}} \newcommand{\EE}{{\boldsymbol{E}}} \newcommand{\bbe}{{\boldsymbol{\beta}}} \newcommand{\BBe}{{\boldsymbol{B}}} \newcommand{\SSi}{{\boldsymbol{\Sigma}}} \newcommand{\tth}{{\boldsymbol{\theta}}} \newcommand{\LLa}{{\boldsymbol{\Lambda}}} \newcommand{\OOm}{{\boldsymbol{\Omega}}} \newcommand{\PPs}{{\boldsymbol{\Psi}}} \newcommand{\TTh}{{\boldsymbol{\Theta}}} \newcommand{\PPh}{{\boldsymbol{\Phi}}} \newcommand{\mmu}{{\boldsymbol{\mu}}} \newcommand{\eet}{{\boldsymbol{\eta}}} \newcommand{\MN}{\textrm{MatNorm}} \newcommand{\mniw}{\textrm{MNIW}} \newcommand{\iwish}{\textrm{InvWish}} \newcommand{\N}{\mathcal{N}} \newcommand{\bz}{\boldsymbol{0}} \renewcommand{\vec}{\textrm{vec}} \newcommand{\ud}{\mathrm{d}} \newcommand{\eps}{\varepsilon} \newcommand{\a}{\alpha} \newcommand{\g}{\gamma} \newcommand{\s}{\sigma} \newcommand{\l}{\lambda} \newcommand{\dt}{\Delta t} \newcommand{\var}{\mathrm{var}} \newcommand{\cov}{\mathrm{cov}} \newcommand{\iid}{\stackrel {\textrm{iid}}{\sim}} \newcommand{\ind}{\stackrel {\textrm{ind}}{\sim}} \newcommand{\llp}{\ell_{\textrm{prof}}} \newcommand{\diag}{\textrm{diag}}
Consider a statistical model $p(\YY \mid \tth, \BBe, \SSi)$ of the form \begin{equation} \YY \sim \MN(\XX_\tth \BBe, \VV_\tth, \SSi), (#eq:lmn) \end{equation} $\XX_\tth = \XX_{n \times p}(\tth)$ is the design matrix which depends on parameters $\tth$, $\BBe_{p \times q}$ are regression coefficients, $\VV_\tth = \VV_{n \times n}(\tth)$ and $\SSi_{q \times q}$ are between-row and between-column variance matrices, and the Matrix-Normal distribution is defined as $$ \ZZ_{p \times q} \sim \MN(\LLa_{p \times q}, \OOm_{p \times p}, \SSi_{q \times q}) \quad \iff \quad \vec(\ZZ) \sim \N(\vec(\LLa), \SSi \otimes \OOm), $$ where $\vec(\ZZ)$ is a vector stacks the columns of $\ZZ$, and $\SSi \otimes \OOm$ denotes the Kronecker product.
Model \@ref(eq:lmn) is referred to as a Linear Model with Nuisance parameters (LMN) $(\BBe, \SSi)$ for parameters of interest $\tth$. The LMN package provides tools to efficiently conduct Frequentist or Bayesian inference on all parameters $\TTh = (\tth, \BBe, \SSi)$ by estimating $\tth$ first, and subsequently $(\BBe, \SSi)$, as illustrated in the examples below.
require(LMN) # problem dimensions qq <- 2 # number of responses n <- 200 # number of observations # parameters Beta <- matrix(c(.3, .5, .7, .2), 2, qq) Sigma <- matrix(c(.005, -.001, -.001, .002), qq, qq) alpha <- .4 lambda <- .1 # simulate data xseq <- seq(0, 10, len = n) # x vector X <- cbind(1, xseq^alpha) # covariate matrix V <- exp(-(outer(xseq, xseq, "-")/lambda)^2) # between-row variance Mu <- X %*% Beta # mean matrix Y <- mniw::rMNorm(n = 1, Lambda = Mu, SigmaR = V, SigmaC = Sigma) # response matrix ## # response matrix ## Y <- matrix(rnorm(n*qq), n, qq) ## Y <- crossprod(chol(V), Y) %*% chol(Sigma) + Mu # plot data par(mfrow = c(1,1), mar = c(4,4,.5,.5)+.1) plot(x = 0, type = "n", xlim = range(xseq), ylim = range(Mu, Y), xlab = "x", ylab = "y") lines(x = xseq, y = Mu[,1], col = "red") lines(x = xseq, y = Mu[,2], col = "blue") points(x = xseq, y = Y[,1], pch = 16, col = "red") points(x = xseq, y = Y[,2], pch = 16, col = "blue") legend("bottomright", legend = c("Response 1", "Response 2", "Expected", "Observed"), lty = c(NA, NA, 1, NA), pch = c(22, 22, NA, 16), pt.bg = c("red", "blue", "black", "black"), seg.len = 1)
Consider a toy example of the form
\begin{equation}
y_{ij} = \beta_{0j} + \beta_{1j} x_i^\alpha + \eps_{ij},
(#eq:toy)
\end{equation}
where $i=1,\ldots,n$, $j=1,\ldots,q$, and the $\eps_{ij}$ are multivariate normal with $E[\eps_{ij}] = 0$ and
$$
\cov(\eps_{ik}, \eps_{jm}) = \Sigma_{ij} \times \exp\left{-\frac{(x_k - x_m)^2}{\lambda^2}\right}.
$$
Then this toy example can be written in the form of \@ref(eq:lmn) with $\tth = (\alpha, \lambda)$ and
$$
\begin{aligned}
\YY_{n\times q} & = \begin{bmatrix} y_{11} & \cdots & y_{1q} \ \vdots & & \vdots \ y_{n1} & \cdots & y_{nq} \end{bmatrix},
&
\VV_{n\times n}(\tth) & = \begin{bmatrix} e^{-\frac{(x_1-x_1)^2}{\lambda^2}} & \cdots & e^{-\frac{(x_1-x_n)^2}{\lambda^2}} \ \vdots & & \vdots \ e^{-\frac{(x_n-x_1)^2}{\lambda^2}} & \cdots & e^{-\frac{(x_n-x_n)^2}{\lambda^2}} \end{bmatrix},
&
\XX_{n\times 2}(\tth) & = \begin{bmatrix} 1 & x_1^\alpha \ \vdots & \vdots \ 1 & x_n^\alpha \end{bmatrix},
\
\BBe_{2\times q} & = \begin{bmatrix} \beta_{01} & \cdots & \beta_{0q} \ \beta_{11} & \cdots & \beta_{1q} \end{bmatrix},
&
\SSi_{q\times q} & = \begin{bmatrix} \Sigma_{11} & \cdots & \Sigma_{1q} \ \vdots & & \vdots \ \Sigma_{q1} & \cdots & \Sigma_{qq} \end{bmatrix}.
\end{aligned}
$$
Sample data is generated below with $n = r n
$ and $q = r qq
$. Note the use of mniw::rMNorm()
from the mniw package to sample from the Matrix Normal.
The workhorse function in LMN is lmn_suff()
, which calculates the sufficient statistics for $(\BBe, \SSi)$ for a given value of $\tth$.
suff <- lmn_suff(Y = Y, X = X, V = V, Vtype = "full") sapply(suff, function(x) paste0(dim(as.array(x)), collapse = "x"))
Namely, the elements of suff
are:
Bhat
: The $p \times q$ matrix $\hat \BBe_\tth = (\XX_\tth'\VV_\tth^{-1}\XX_\tth)^{-1}\XX_\tth'\VV_\tth^{-1}\YY$.T
: The $p \times p$ matrix $\TT_\tth = \XX_\tth'\VV_\tth^{-1}\XX_\tth$.S
: The $q \times q$ matrix $\SS_\tth = (\YY - \XX_\tth\hat\BBe_\tth)'\VV_\tth^{-1}(\YY - \XX_\tth\hat\BBe_\tth)$.ldV
: The log-determinant $\log |\VV_\tth|$.n
, p
, q
: The dimensions of the problem.In particular, the MLEs of $(\BBe, \SSi)$ given a particular value of $\tth$ are $\hat \BBe_\tth$ and $\hat \SSi_\tth = \SS_\tth/n$.
The profile (log)likelihood function for the LMN model corresponds to evaluating the full likelihood as a function of $\tth$ at the conditional MLE of $(\BBe, \SSi)$:
$$
\llp(\tth \mid \YY) = \ell_{\textrm{full}}(\tth, \BBe = \hat \BBe_\tth, \SSi = \hat \SSi_\tth \mid \YY).
$$
The following R code shows how to calculate the full MLE $\hat \TTh = (\hat \tth, \hat \BBe, \hat \SSi)$ from only a 2D optimization of $\llp(\alpha, \lambda \mid \YY)$. The first step is to now that for equally-spaced $x_i$ as in the simulated data above, the between-row variance matrix $\VV_\tth$ is in fact Toeplitz. It is entirely determined by its first row, and can be inverted much more efficiently than dense matrices using the R package r cran_link("SuperGauss")
.
# check than dense matrix and Toeplitz matrix calculations are the same # autocorrelation function, or first row of V_theta toy_acf <- function(lambda) exp(-((xseq-xseq[1])/lambda)^2) # check that calculation of suff is the same all.equal(suff, lmn_suff(Y = Y, X = X, V = toy_acf(lambda), Vtype = "acf")) # check that it's much faster to use Vtype = "acf" system.time({ # using dense variance matrix replicate(100, lmn_suff(Y = Y, X = X, V = V, Vtype = "full")) }) system.time({ # using Toeplitz variance matrix replicate(100, lmn_suff(Y = Y, X = X, V = toy_acf(lambda), Vtype = "acf")) })
Next, let's find the value of the MLE $\hat \TTh$ using stats::optim()
. For display purposes the parameters will be written as
$$
\TTh = \left(\alpha, \lambda, \beta_{01}, \beta_{02}, \beta_{11}, \beta_{12}, \sigma_1 = \Sigma_{11}^{1/2}, \sigma_2 = \Sigma_{22}^{1/2}, \rho_{12} = \frac{\Sigma_{12}}{\sigma_1\sigma_2}\right).
$$
Also, as the SuperGauss computations require some memory allocation, we'll declare a SuperGauss::Toeplitz()
object once and re-use it within the optimization routine.
# pre-allocate memory for Toeplitz matrix calcuations Tz <- SuperGauss::Toeplitz$new(N = n) # sufficient statistics for the toy model # sufficient statistics for toy model toy_suff <- function(theta) { X <- cbind(1, xseq^theta[1]) Tz$set_acf(acf = toy_acf(theta[2])) lmn_suff(Y = Y, X = X, V = Tz, Vtype = "acf") } # _negative_ profile likelihood for theta toy_prof <- function(theta) { if(theta[2] < 0) return(-Inf) # range restriction lambda > 0 suff <- toy_suff(theta) -lmn_prof(suff = suff) } # MLE of theta opt <- optim(par = c(alpha, lambda), # starting value fn = toy_prof) # objective function theta_mle <- opt$par # MLE of (Beta, Sigma) suff <- toy_suff(theta_mle) Beta_mle <- suff$Bhat Sigma_mle <- suff$S/suff$n # display: # convert variance matrix to vector of standard deviations and correlations. cov2sigrho <- function(Sigma) { sig <- sqrt(diag(Sigma)) n <- length(sig) # dimensions of Sigma names(sig) <- paste0("sigma",1:n) # indices of upper triangular elements iupper <- matrix(1:(n^2),n,n)[upper.tri(Sigma, diag = FALSE)] rho <- cov2cor(Sigma)[iupper] rnames <- apply(expand.grid(1:n, 1:n), 1, paste0, collapse = "") names(rho) <- paste0("rho",rnames[iupper]) c(sig,rho) } Theta_mle <- c(theta_mle, t(Beta_mle), cov2sigrho(Sigma_mle)) names(Theta_mle) <- c("alpha", "lambda", "beta_01", "beta_02", "beta_11", "beta_12", "sigma_1", "sigma_2", "rho_12") signif(Theta_mle, 2)
Finally, let's calculate standard errors for each parameter using $\sqrt{\diag(\widehat{\var}(\hat \TTh))}$, where
$$
\widehat{\var}(\hat \TTh) = -\left[\frac{\partial^2 \ell(\TTh \mid \YY)}{\partial \TTh\partial\TTh'} \right]^{-1}.
$$
This can be done numerically using the R package r cran_link("numDeriv")
function numDeriv::hessian()
:
# full _negative_ loglikelihood for the toy model toy_nll <- function(Theta) { theta <- Theta[1:2] Beta <- rbind(Theta[3:4], Theta[5:6]) Sigma <- diag(Theta[7:8]^2) Sigma[1,2] <- Sigma[2,1] <- Theta[7]*Theta[8]*Theta[9] # calculate loglikelihood suff <- toy_suff(theta) -lmn_loglik(Beta = Beta, Sigma = Sigma, suff = suff) } # uncertainty estimate: # variance estimator Theta_ve <- solve(numDeriv::hessian(func = toy_nll, x = Theta_mle)) Theta_se <- sqrt(diag(Theta_ve)) # standard errors # display tab <- rbind(true = c(alpha, lambda, t(Beta), cov2sigrho(Sigma)), mle = Theta_mle, se = Theta_se) colnames(tab) <- paste0("$\\", gsub("([0-9]+)", "{\\1}", names(Theta_mle)), "$") rownames(tab) <- c("True Value", "MLE", "Std. Error") kableExtra::kable(as.data.frame(signif(tab,2)))
set.seed(7) # for reproducible results # simulate data from the gcir model gcir_sim <- function(N, dt, Theta, x0) { # parameters gamma <- Theta[1] mu <- Theta[2] sigma <- Theta[3] lambda <- Theta[4] Rt <- rep(NA, N+1) Rt[1] <- x0 for(ii in 1:N) { Rt[ii+1] <- rnorm(1, mean = Rt[ii] - gamma * (Rt[ii] - mu) * dt, sd = sigma * Rt[ii]^lambda * sqrt(dt)) } Rt } # true parameter values Theta <- c(gamma = .07, mu = .01, sigma = .6, lambda = .9) dt <- 1/12 # interobservation time (in years) N <- 12 * 20 # number of observations (20 years)
In @chan.etal92, a model for the interest rate $R_t$ as a function of time is given by the stochastic differential equation (SDE)
\begin{equation}
\ud R_t = -\g(R_t - \mu) \dt + \s R_t^\l\ud B_t,
(#eq:chan)
\end{equation}
where $B_t$ is Brownian motion and the parameters are restricted to $\gamma, \mu, \sigma, \lambda > 0$. Suppose the data $\RR = (R_0, \ldots, R_N)$ consists of equispaced observations $R_n = R_{n\cdot \dt}$ with interobservation time $\dt$. A commonly-used discrete-time approximation is given by
\begin{equation}
R_{n+1} \mid R_0,\ldots,R_n \sim \N\big(R_n - \g(R_n - \mu)\dt, \s^2 R_n^{2\l} \dt\big).
(#eq:euler)
\end{equation}
Sample data from the discrete-time approximation \@ref(eq:euler) to the so-called generalized Cox-Ingersoll-Ross (gCIR) model \@ref(eq:chan) is generated below, with $\dt = 1/12$ (one month) $N = r N
$ (20 years), and true parameter values r paste0("$\\TTh = (\\gamma, \\mu, \\sigma, \\lambda) = (", paste0(Theta, collapse = ", "), ")$")
.
Rt <- gcir_sim(N = N, dt = dt, Theta = Theta, x0 = Theta["mu"]) par(mar = c(4,4,.5,.5)) plot(x = 0:N*dt, y = 100*Rt, pch = 16, cex = .8, xlab = "Time (years)", ylab = "Interest Rate (%)")
The likelihood for $\TTh$ is of LMN form \@ref(eq:lmn) with $\tth = \lambda$, $\BBe_{2 \times 1} = (\gamma, \gamma \mu)$, $\SSi_{1 \times 1} = \sigma^2$, and
$$
\begin{aligned}
\YY_{N\times 1} & = \begin{bmatrix} R_1 - R_0 \ \vdots \ R_N - R_{N-1} \end{bmatrix}, & \XX_{N \times 2} & = \begin{bmatrix} - R_0 \dt & \dt \ \vdots & \vdots \ - R_{N-1} \dt & \dt \end{bmatrix}, & \VV_{N \times N}(\lambda) & = \begin{bmatrix} X_0^{2\lambda} \dt & & 0 \ & \ddots & \ 0 & & X_{N-1}^{2\lambda} \dt\end{bmatrix}.
\end{aligned}
$$
Thus, we may proceed to maximum likelihood estimation via profile likelihood as above, using the Vtype = diag
argument to lmn_suff()
to optimize calculations for diagonal $\VV$.
# precomputed values Y <- matrix(diff(Rt)) X <- cbind(-Rt[1:N], 1) * dt # since Rt^(2*lambda) is calculated as exp(2*lambda * log(Rt)), # precompute 2*log(Rt) to speed up calculations lR2 <- 2 * log(Rt[1:N]) # sufficient statistics for gCIR model gcir_suff <- function(lambda) { lmn_suff(Y = Y, X = X, V = exp(lambda * lR2) * dt, Vtype = "diag") } # _negative_ profile likelihood for gCIR model gcir_prof <- function(lambda) { if(lambda <= 0) return(Inf) -lmn_prof(suff = gcir_suff(lambda)) } # MLE of Theta via profile likelihood # profile likelihood for lambda opt <- optimize(f = gcir_prof, interval = c(.001, 10)) lambda_mle <- opt$minimum # conditional MLE for remaining parameters suff <- gcir_suff(lambda_mle) Theta_mle <- c(gamma = suff$Bhat[1,1], mu = suff$Bhat[2,1]/suff$Bhat[1,1], sigma = sqrt(suff$S[1,1]/suff$n), lambda = lambda_mle) Theta_mle
However, we can see that the profile likelihood method produces negative estimates of $\gamma$ and $\mu$, i.e., outside of the parameter support. We could try to restrict or penalize the likelihood optimization problem to obtain an admissible MLE, but then the profile likelihood simplifications would no longer apply.
Instead, consider the following Bayesian approach. First, we note that the conjugate prior for $(\BBe, \SSi)$ in the LMN model conditional on $\tth$ is the Matrix-Normal Inverse-Wishart (MNIW) distribution, $$ \BBe, \SSi \mid \tth \sim \mniw(\LLa_\tth, \OOm_\tth, \PPs_\tth, \nu_\tth) \qquad \iff \qquad \begin{aligned} \BBe \mid \SSi & \sim \MN(\LLa_\tth, \OOm_\tth^{-1}, \SSi) \ \SSi & \sim \iwish(\PPs_\tth, \nu_\tth), \end{aligned} $$ where $\iwish$ denotes the Inverse-Wishart distribution, and the hyperparameters $\PPh_\tth = (\LLa_\tth, \OOm_\tth, \PPs_\tth, \nu_\tth)$ can depend on $\tth$. Thus, for the prior distribution $\pi(\BBe, \SSi, \tth)$ given by
\begin{equation} \begin{aligned} \tth & \sim \pi(\tth) \ \BBe, \SSi \mid \tth & \sim \mniw(\LLa_\tth, \OOm_\tth, \PPs_\tth, \nu_\tth), \end{aligned} (#eq:conjprior) \end{equation}
we have the following analytical results:
The conjugate posterior distribution $p(\BBe, \SSi \mid \YY, \tth)$ is also $\mniw$, with closed-form expressions for the hyperparameters $\hat \PPh_\tth = (\hat \LLa_\tth, \hat \OOm_\tth, \hat \PPs_\tth, \hat \nu_\tth)$ calculated by lmn_post()
.
The marginal posterior distribution $p(\tth \mid \YY)$ has a closed-form expression calculated by lmn_marg()
.
Both closed-form expressions are provided below. Putting these results together, we can efficiently conduct Bayesian inference for LMN models by first sampling $\tth^{(1)}, \ldots, \tth^{(B)} \sim p(\tth \mid \YY)$, then conditionally sampling $(\BBe^{(b)}, \SSi^{(b)}) \ind \mniw(\hat \PPh_{\tth^{(b)}})$ for $b = 1,\ldots, B$. This is done in the R code below with the default prior
$$
\pi(\TTh) \propto |\SSi|^{-(q+1)/2},
$$
which is obtained from lmn_prior()
:
prior <- lmn_prior(p = 2, q = 1) # default prior prior
First, we implement a grid-based sampler for $\lambda \sim p(\lambda \mid \RR)$:
# log of marginal posterior p(lambda | R) gcir_marg <- function(lambda) { suff <- gcir_suff(lambda) post <- lmn_post(suff, prior) lmn_marg(suff = suff, prior = prior, post = post) } # grid sampler for lambda ~ p(lambda | R) # estimate the effective support of lambda by taking # mode +/- 5 * sqrt(quadrature) lambda_mode <- optimize(f = gcir_marg, interval = c(.01, 10), maximum = TRUE)$maximum lambda_quad <- -numDeriv::hessian(func = gcir_marg, x = lambda_mode)[1] lambda_rng <- lambda_mode + c(-5,5) * 1/sqrt(lambda_quad) # plot posterior on this range lambda_seq <- seq(lambda_rng[1], lambda_rng[2], len = 1000) lambda_lpdf <- sapply(lambda_seq, gcir_marg) # log-pdf # normalized pdf lambda_pdf <- exp(lambda_lpdf - max(lambda_lpdf)) lambda_pdf <- lambda_pdf / sum(lambda_pdf) / (lambda_seq[2]-lambda_seq[1]) par(mar = c(2,4,2,.5)) plot(lambda_seq, lambda_pdf, type = "l", xlab = expression(lambda), ylab = "", main = expression(p(lambda*" | "*bold(R))))
The grid appears to have captured the effective support of $p(\lambda \mid \RR)$, so we may proceed to conditional sampling. To do this effectively we use the function mniw::rmniw()
in the mniw package, which vectorizes simulations over different MNIX parameters $\hat \PPh_{\tth^{(1)}}, \ldots, \PPh_{\tth^{(1)}}$.
npost <- 5e4 # number of posterior draws # marginal sampling from p(lambda | R) lambda_post <- sample(lambda_seq, size = npost, prob = lambda_pdf, replace = TRUE) # conditional sampling from p(B, Sigma | lambda, R) BSig_post <- lapply(lambda_post, function(lambda) { lmn_post(gcir_suff(lambda), prior) }) BSig_post <- list2mniw(BSig_post) # convert to vectorized mniw format BSig_post <- mniw::rmniw(npost, Lambda = BSig_post$Lambda, Omega = BSig_post$Omega, Psi = BSig_post$Psi, nu = BSig_post$nu) # convert to Theta = (gamma, mu, sigma, lambda) Theta_post <- cbind(gamma = BSig_post$X[1,1,], mu = BSig_post$X[2,1,]/BSig_post$X[1,1,], sigma = sqrt(BSig_post$V[1,1,]), lambda = lambda_post) apply(Theta_post, 2, min)
We can see that the posterior sampling scheme above for $p(\TTh \mid \RR)$ did not always produce positive values for $\gamma$ and $\mu$. However, we can correct this post-hoc by making use of the following fact:
Rejection Sampling. Suppose that for a given prior $\TTh \sim \pi(\TTh)$ and likelihood function $p(\RR \mid \TTh)$, we obtain a sample $\TTh^{(1)}, \ldots, \TTh^{(B)}$ from the posterior distribution $p(\TTh \mid \RR)$. Then if we keep only the samples such that $\TTh^{(b)} \in \mathcal{S}$, this results in samples from the posterior distribution with likelihood $p(\RR \mid \TTh)$ and constrained prior distribution $\TTh \sim \pi(\TTh \mid \TTh \in S)$.
In other words, if we eliminate from Theta_post
all rows for which $\gamma < 0$ or $\mu < 0$, we are left with a sample form the posterior distribution with prior
$$ \pi(\TTh) \propto 1/\sigma^2 \times \boldsymbol{\textrm{I}}{\gamma, \mu > 0}. $$
Posterior parameter distributions from the corresponding rejection sampler are displayed below.
# keep only draws for which gamma, mu > 0 ikeep <- pmin(Theta_post[,1], Theta_post[,2]) > 0 mean(ikeep) # a good number of draws get discarded Theta_post <- Theta_post[ikeep,] # convert mu to log scale for plotting purposes Theta_post[,"mu"] <- log10(Theta_post[,"mu"]) # posterior distributions and true parameter values Theta_names <- c("gamma", "log[10](mu)", "sigma", "lambda") Theta_true <- Theta Theta_true["mu"] <- log10(Theta_true["mu"]) par(mfrow = c(2,2), mar = c(2,2,3,.5)+.5) for(ii in 1:ncol(Theta_post)) { hist(Theta_post[,ii], breaks = 40, freq = FALSE, xlab = "", ylab = "", main = parse(text = paste0("p(", Theta_names[ii], "*\" | \"*bold(R))"))) abline(v = Theta_true[ii], col = "red", lwd = 2) if(ii == 1) { legend("topright", inset = .05, legend = c("Posterior Distribution", "True Parameter Value"), lwd = c(NA, 2), pch = c(22, NA), seg.len = 1.5, col = c("black", "red"), bg = c("white", NA), cex = .85) } }
For the regression model \@ref(eq:lmn) with conjugate prior \@ref(eq:conjprior), the posterior distribution $p(\BBe, \SSi, \tth \mid \YY)$ is given by
$$ \begin{aligned} \tth \mid \YY & \sim p(\tth \mid \YY) \propto \pi(\tth) \frac{\Xi(\PPs_{\tth}, \nu_{\tth})}{\Xi(\hat\PPs_{\tth},\hat\nu_{\tth})} \left(\frac{|\OOm_{\tth}|(2\pi)^{-n}}{|\hat \OOm_{\tth}||\VV_{\tth}|}\right)^{q/2} \ \BBe, \SSi \mid \tth, \YY & \sim \mniw(\hat \LLa_\tth, \hat\OOm_\tth, \hat \PPs_\tth, \hat \nu_\tth), \end{aligned} $$
where
$$ \begin{aligned} \Xi(\PPs,\nu) & = \frac{|\PPs|^{\nu/2}}{\sqrt{2^{\nu q}} \Gamma_q(\tfrac \nu 2)}, & \Gamma_q(a) & = \pi^{q(q-1)/4} \prod_{j=1}^q \Gamma[a + \tfrac 1 2(1-j)], \ \hat \OOm_{\tth} & = \OOm_{\tth} + \TT_{\tth}, & \hat \LLa_{\tth} & = \hat \OOm_{\tth}^{-1}(\TT_{\tth} \hat \BBe_{\tth} + \OOm_{\tth} \LLa_{\tth}), \ \hat \nu_{\tth} & = \nu_{\tth} + n, & \hat \PPs_{\tth} & = \PPs_{\tth} + \SS_{\tth} + \hat \BBe_{\tth}' \TT_{\tth} \hat \BBe_{\tth} + \LLa_{\tth}' \OOm_{\tth} \LLa_{\tth} - \hat \LLa_{\tth}' \hat \OOm_{\tth} \hat \LLa_{\tth}, \end{aligned} $$
and $\TT_{\tth}$, $\SS_{\tth}$ and $\hat \BBe_{\tth}$ are outputs from lmn_suff()
defined above.
par(oldpar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.