knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" )
The goal of claimr is to streamline claim audits
You can install the development version from GitHub with:
# install.packages("devtools") devtools::install_github("mncube/claimr")
#Load claimr library(claimr) #Generate sampling frame with an index id from 1 to N df_sample_frame_num <- data.frame("sample_frame_sequence_id" = 1:1000, "score" = rnorm(1000)) #Take a simple random sample from the sampling frame #And return the output (sample, sample frame, spares) and input in lists score_audit_num <- rs_singlestage(df = df_sample_frame_num, seed_number = 100, audit_review = "Score Audit", quantity_to_generate = 100, quantity_of_spares = 3, frame_low = 1, frame_high = 1000) #View some of the samples head(score_audit_num$output$sample) #View some of the sampling frame head(score_audit_num$output$sample_frame) #View some of the spares head(score_audit_num$output$spares) #Compute the relative bias relative_bias(score_audit_num, score)
#Get info uva_info <- gi_unrestricted_variable_appraisals(samp_obj = score_audit_num, data_file_format = c("Audited Values"), audited_values = score, sample_item_number = sample_frame_sequence_id) #Look at the data_file uva_info$audit_review uva_info$frame_size uva_info$sample_size uva_info$data_file_format head(uva_info$data_file) #Export data file needed to process "Audited Values" Unrestricted Variable Appraisals in RAT-STATS rs_uva <- uva_info$data_file #write.table(rs_uva, sep=",", col.names=FALSE)
#In this example let each data frame represents a score sheet (first_set) with #10 scores (second_set) on each sheet #Create three separate score sheets df1 <- data.frame(page = c(1), score = rnorm(10, 7,2), item = 1:10) df2 <- data.frame(page = c(2), score = rnorm(10, 6, 1.5), item = 1:10) df3 <- data.frame(page = c(3), score = rnorm(10, 8, 0.5), item = 1:10) #Combine the score sheets df_combined <- rbind(df1, df2, df3) #Randomly pull observations from the combined score sheet combined_out <- rs_setsoftwo(df = df_combined, first_set = page, second_set = item, seed_number = NA, audit_review = "", quantity_to_generate = 10, quantity_of_spares = 2, first_set_low = 1, first_set_high = 3, second_set_low = 1, second_set_high = 10) #Get head of sample head(combined_out$output$sample) #Get the mean of the sample mean(unlist(combined_out$output$sample))
#In this example let each data frame represents a pre-test or post-test (first_set) and #a score sheet (second_set) with 10 scores (third_set) on each sheet #Create six separate data frames df1_pre <- data.frame(time = 1, page = c(1), score = rnorm(10, 7,2), item = 1:10) df2_pre <- data.frame(time = 1, page = c(2), score = rnorm(10, 6, 1.5), item = 1:10) df3_pre <- data.frame(time = 1, page = c(3), score = rnorm(10, 8, 0.5), item = 1:10) df1_post <- data.frame(time = 2, page = c(1), score = rnorm(10, 7,2), item = 1:10) df2_post <- data.frame(time = 2, page = c(2), score = rnorm(10, 6, 1.5), item = 1:10) df3_post <- data.frame(time = 2, page = c(3), score = rnorm(10, 8, 0.5), item = 1:10) #Combine the data frames df_combined <- rbind(df1_pre, df2_pre, df3_pre, df1_post, df2_post, df3_post) #Randomly pull observations from df_combined combined_out <- rs_setsofthree(df = df_combined, first_set = time, second_set = page, third_set = item, seed_number = NA, audit_review = "", quantity_to_generate = 10, quantity_of_spares = 2, first_set_low = 1, first_set_high = 2, second_set_low = 1, second_set_high = 3, third_set_low = 1, third_set_high = 10) #Get head of sample head(combined_out$output$sample, 10)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.