PsychDelta | R Documentation |
Estimate Point of Subjective Equivalence (PSE), Just Noticeable
Difference (JND), and related Standard Errors of an individual participant
by means of Delta Method.
The method only applies to a GLM (object of class glm
) with one continuous
predictor and a probit link function.
PsychDelta(model.obj, alpha = 0.05, p = 0.75)
model.obj |
the fitted psychometric function. An object of class |
alpha |
significance level of the confidence interval.Default is 0.05 (95% confidence interval). |
p |
probability value relative to the JND upper limit. Default is 0.75 (value for 50% JND). |
PsychDelta
estimates PSE and JND of a psychometric
function (object of class glm
).
PsychDelta
returns a matrix including estimate, standard error,
inferior and superior bounds of the confidence interval of PSE and JND. Confidence Intervals
are computed as: Estimate +/- z(1-(\alpha/2)) * Std.Error
.
The function assumes that the first model coefficient is the intercept and the second is the slope. The estimate of the JND assumes a probit link function.
Faraggi, D., Izikson, P., & Reiser, B. (2003). Confidence intervals for the 50 per cent response dose. Statistics in medicine, 22(12), 1977-1988. https://doi.org/10.1002/sim.1368
Knoblauch, K., & Maloney, L. T. (2012). Modeling psychophysical data in R (Vol. 32). Springer Science & Business Media.
Moscatelli, A., Mezzetti, M., & Lacquaniti, F. (2012). Modeling psychophysical data at the population-level: The generalized linear mixed model. Journal of Vision, 12(11):26, 1-17. doi:10.1167/12.11.26
glm
for fitting a Generalized Linear Model to a single-subject response. glmer
for Generalized Linear Mixed Models (including fixed and random effects). MixDelta
for estimating PSE and JND at a population level
with delta method.
data.S1 <- subset(simul_data, Subject == "S1")
model.glm = glm(formula = cbind(Longer, Total - Longer) ~ X,
family = binomial(link = "probit"), data = data.S1)
PsychDelta(model.glm)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.