pseMer | R Documentation |
Estimates the Point of Subjective Equivalence (PSE), the Just Noticeable
Difference (JND) and the related Standard Errors by means of Bootstrap Method,
given an object of class merMod
.
pseMer(
mer.obj,
B = 200,
FUN = NULL,
alpha = 0.05,
ci.type = c("norm", "basic", "perc"),
beep = F
)
mer.obj |
an object of class |
B |
integer. Number of bootstrap samples. |
FUN |
an optional, custom made function to specify the required parameters to be estimated.
If NULL, |
alpha |
significance level of the confidence intervals. Default is 0.05 (95% confidence interval). |
ci.type |
vector of character strings representing the type of intervals required. The value
should be any subset of the values accepted by |
beep |
logical. If TRUE, a "ping" sound alerts that the simulation is complete. Default is FALSE. |
pseMer
estimates PSE and JND (and additional user defined parameters) from a
fitted GLMM model (class merMod
).
pseMer
returns a list of length 3 including a summary table (estimate,
inferior and superior bounds of the confidence interval), the output of bootMer
, and that of
boot.ci
, for further analyses. Confidence intervals in the summary table are
based on the percentile method.
A first custom function was written in 2012 for the non-CRAN package MERpsychophisics,
based on the algorithm in Moscatelli et al. (2012). The current function is a wrapper
of function bootMer
and boot.ci
.
Increasing the number of bootstrap samples (B
) makes the estimate more reliable.
However, this will also increase the duration of the computation.
Moscatelli, A., Mezzetti, M., & Lacquaniti, F. (2012). Modeling psychophysical data at the population-level: The generalized linear mixed model. Journal of Vision, 12(11):26, 1-17. doi:10.1167/12.11.26
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 51. https://doi.org/10.18637/jss.v067.i01
bootMer
and boot.ci
for estimation of confidence intervals with the bootstrap method.
MixDelta
for confidence intervals with delta method.
library(lme4)
#example 1: univariable GLMM
mod.uni = glmer(formula = cbind(Longer, Total - Longer) ~ X + (1 | Subject),
family = binomial(link = "probit"), data = simul_data)
BootEstim.uni <- pseMer(mod.uni, B = 100, ci.type = c("perc"))
#example 2: specify custom parameters for multivariable model
mod.multi <- glmer(cbind(faster, slower) ~ speed * vibration + (1 + speed| subject),
family = binomial(link = "probit"), data = vibro_exp3)
fun2mod = function(mer.obj){
#allocate space: 4 parameters (jnd_A, jnd_B, pse_A, pse_B)
jndpse = vector(mode = "numeric", length = 4)
names(jndpse) = c("pse_0", "pse_32","jnd_0", "jnd_32")
jndpse[1] = -fixef(mer.obj)[1]/fixef(mer.obj)[2] #pse_0
jndpse[2] = -(fixef(mer.obj)[1]+fixef(mer.obj)[3])/(fixef(mer.obj)[2]+ fixef(mer.obj)[4]) #pse_0
jndpse[3] = qnorm(0.75)/fixef(mer.obj)[2] #jnd_0
jndpse[4] = qnorm(0.75)/(fixef(mer.obj)[2]+ fixef(mer.obj)[4]) #jnd_32
return(jndpse)
}
BootEstim.multi = pseMer(mod.multi, B = 100, FUN = fun2mod)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.