knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
The first step of modelling infectious disease outbreaks is to fit out model to data. This vignette fits an exponential kernel with a constant exogenous term to some fake data.
# Loads the library library(epihawkes) # Sets the seed set.seed(6) # Initialise parameters <- list(alpha = 0.98890929785557, delta = 0.397745453286915, A = 0.115697778761387, B = 0.0697486787103112, delay = 12) T_max <- 37 print_level <- 1 # Parameterise kernels mu_term <- "linear" mu_fn <- mu_linear N_runs <- 1 events <- hawkes_simulation(events = c(0), kernel = ray_kernel, T_max = T_max, parameters = parameters, mu_fn = mu_fn, print_level = print_level) print(sprintf("Number of events: %f", length(events)))
We can now plot our events count over time.
plot_events(events, T_max)
We can also plot the intensity of our kernel over time.
plot_intensity(events, T_max, kernel = ray_kernel, parameters = parameters, mu_fn = mu_fn)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.