# Testing Script ------------------------------------------------------------------------
# Load required packages ----------------------------------------------------------------
library(dplyr)
library(tidyr)
library(TTR)
library(EpiEstim)
library(ggplot2)
library(scales)
library(RColorBrewer)
# Load data -----------------------------------------------------------------------------
load("data/china_rt_estimates.rda")
load("data/exante_movement_data.rda")
load("data/china_case_data.rda")
# user can either read in rt estimates directly or estimate them with pika --------------
# to estimate them with pik, use estimate_rt() ------------------------------------------
pika_rt_estimates <- estimate_rt(dat = china_case_data,
grp_var = "province",
date_var = "date",
incidence_var = "cases"
)
# Join data sets together by date and province to determine cross correlation -----------
# for this we are using input rt estimates, not those estimated using pika::estimate_rt()
data_joined <- left_join(china_rt_estimates,
exante_movement_data,
by = c("date","province")
)
# Determine lag with max cross correlation between Rt and movement ----------------------
lags <- cross_corr(dat = data_joined,
date_var = "date",
grp_var = "province",
x_var = "r_mean",
y_var = "movement",
max_lag = 10,
subset_date = '2020-02-15'
)
# use min lag across groups -------------------------------------------------------------
my_lag <- min(lags$lag)
# create lag date using max lag from cross_corr() ---------------------------------------
data_joined_lag <- china_rt_estimates %>%
mutate(date = date + my_lag) %>%
left_join(., exante_movement_data, by = c("date", "province"))
# Determine rolling correlation between Rt and movement ---------------------------------
data_corr <- rolling_corr(dat = data_joined_lag,
grp_var = "province",
x_var = "r_mean",
y_var = "movement",
n = 14)
# Plot Rt, movement, and correlation ----------------------------------------------------
my_labels <- c("beijing" = "Beijing", "guandong" = "Guangdong", "henan" = "Henan",
"hong_kong_sar" = "Hong Kong SAR", "hubei" = "Hubei", "hunan" = "Hunan",
"zhejiang" = "Zhejiang")
my_legend = c("Correlation", "Reproduction Number", "Movement")
plot_corr(dat = data_corr,
date_var = "date",
grp_var = "province",
x_var = "r_mean",
y_var = "movement",
x_var_lower = "r_q2.5",
x_var_upper = "r_q97.5",
facet_labels = my_labels,
legend_labels = my_legend,
y_max = 10
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.