knitr::opts_chunk$set(comment='.', message=FALSE, fig.path="inst/maintenance/img/README-")
A toolkit to be used with mrgsolve
library(devtools) install_github("mrgsolve/mrgsolvetk")
To install branch with mrgoptim function, until merged with mrgsolve/master:
library(devtools) install_github("mhismail/mrgsolvetk",ref="mrgoptim")
library(ggplot2) library(dplyr) library(mrgsolve) library(mrgsolvetk) theme_set(theme_bw()) mod <- mread_cache("pk1cmt",modlib()) mod <- ev(mod, amt=100) %>% Req(CP) %>% update(end = 48, delta = 0.25) param(mod)
sens_uniflower and upper scale the parameter value to provide a and b arguments to runifout <- mod %>% select(CL,VC,KA1) %>% sens_unif(.n=10, lower=0.2, upper=3) out sens_plot(out, CP)
We can also make a univariate version of this
mod %>% select(CL,VC,KA1) %>% sens_unif(.n=10, lower=0.2, upper=3, univariate = TRUE) %>% sens_plot(CP, split = TRUE)
sens_norm%CVmod %>% select(CL,VC) %>% sens_norm(.n=10, cv=30) %>% sens_plot(CP)
sens_seqmod %>% sens_seq(CL = seq(2,12,2), VC = seq(30,100,10)) %>% sens_plot(CP)
sens_rangemod %>% select(CL,VC) %>% sens_range(.n = 5, .factor = 4) %>% sens_plot(CP, split = TRUE)
or
mod %>% sens_range(CL = c(0.5, 1.5), VC = c(10,40), .n = 5) %>% sens_plot(CP)
sens_gridsens_seq but performs all combinationsmod %>% sens_grid(CL = seq(1,10,1), VC = seq(20,40,5)) %>% sens_plot(CP)
sens_covsetdmutate to generate random variates for each parameter cov1 <- dmutate::covset(CL ~ runif(1,3.5), VC[0,] ~ rnorm(50,25)) cov1
out <- mod %>% sens_covset(cov1)
out
distinct(out,ID,CL,VC)
mrgoptimThis example shows a simultaneous fit of PK and PD data from five dose levels.
The data to be fit is an mrgsolve dataset. Required columns for fitting are:
data <- read.csv("inst/maintenance/data/optim-example.csv") head(data)
Plot the data to get an idea of the profiles to be fit. cmt 1 is plasma concentration data and cmt 2 is PD data
ggplot(data,aes(x=time,y=dv,color=as.factor(ID)))+ geom_point()+ geom_line()+ facet_wrap("cmt")+ guides(color=F)
The following model will be fit to these data:
code<-" $PROB 2 cmt PK Model, Emax PD model $PARAM CL=10 VC = 20 VP = 20 Q=20 Emax = 60 BL = 50 EC50 = 10 gamma =1 sigma1 = 0.1 sigma2 = 0.1 $CMT X1 X2 $ODE dxdt_X1 = -(Q+CL)/VC*X1+Q/VP*X2; dxdt_X2 = Q/VC*X1-Q/VP*X2; $TABLE capture PK = X1/VC; capture varPK = (PK*sigma1)*(PK*sigma1); capture PD = BL-(pow(PK,gamma)*Emax)/(pow(PK,gamma)+pow(EC50,gamma)); capture varPD = (PD*sigma2)*(PD*sigma2);" mod <- mcode("2cmtPK-Emax",code)
Here, the plasma concentrations, response, and variances were captured in the PK, PD, varPK, and varPD outputs, respectively.
Let's check how the initial parameter values fit the data.
out <- mod%>% data_set(data)%>% obsonly()%>% mrgsim()%>% as.data.frame() ggplot(out,aes(x=time,y=PK,color=as.factor(ID)))+ geom_line()+ geom_point(data=filter(data,cmt==1),aes(y=dv))+ guides(color=F) ggplot(out,aes(x=time,y=PD,color=as.factor(ID)))+ geom_line()+ geom_point(data=filter(data,cmt==2),aes(y=dv))+ guides(color=F)
Not terrible, should be good enough for initial estimates.
Now let's use mrgoptim to optimize the parameters and return parameter values and precision.
The input, output,and var arguments map the observed values to the output compartments and variances of the outputs. Since compartment 1 in the input dataset corresponds to plasma concentration data, which is the PK column in the output, they both need to be the first value in their respective vectors. Similarly, since varPK corresponds to the variance of the PK data, it is the first value in the var argument vector.
fit<- mod%>% data_set(data)%>% mrgoptim(input=c(1,2), output=c("PK","PD"), var= c("varPK","varPD"), prms=c("CL", "VC", "VP", "Q", "Emax", "BL", "EC50", "gamma"), v_prms=c("sigma1","sigma2"), method="newuoa")
The function returns a list with some information about the optimization, the final objective function value (-2LL), final parameter estimates, covariance and correlation matrices, CV percent, and output dataset.
print(fit)
Lets check how the optimized parameters fit the data.
out_fit <- mod%>% param(fit$par)%>% data_set(data)%>% obsonly()%>% mrgsim()%>% as.data.frame() ggplot(out_fit,aes(x=time,y=PK,color=as.factor(ID)))+ geom_line()+ geom_point(data=filter(data,cmt==1),aes(y=dv))+ guides(color=F) ggplot(out_fit,aes(x=time,y=PD,color=as.factor(ID)))+ geom_line()+ geom_point(data=filter(data,cmt==2),aes(y=dv))+ guides(color=F)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.