| pcaRobS | R Documentation | 
This function computes robust principal components based on the minimization of the "residual" M-scale.
pcaRobS(X, ncomp, desprop = 0.9, deltasca = 0.5, maxit = 100)
| X | a data matrix with observations in rows. | 
| ncomp | desired (maximum) number of components | 
| desprop | desired (minimum) proportion of explained variability (default = 0.9) | 
| deltasca | "delta" parameter of the scale M-estimator (default=0.5) | 
| maxit | maximum number of iterations (default= 100) | 
A list with the following components:
| q | The actual number of principal components | 
| propex | The actual proportion of unexplained variability | 
| eigvec | Eigenvectors, in a  | 
| fit | an  | 
| repre | An  | 
| propSPC | A vector of length  | 
Ricardo Maronna, rmaronna@retina.ar, based on original code by D. Pen~a and J. Prieto
http://www.wiley.com/go/maronna/robust
data(bus)
X0 <- as.matrix(bus)
X1 <- X0[,-9]
ss <- apply(X1, 2, mad)
mu <- apply(X1, 2, median)
X <- scale(X1, center=mu, scale=ss)
q <- 3  #compute three components
rr <- pcaRobS(X, q, 0.99)
round(rr$eigvec, 3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.