Description Usage Format Source Examples
MCMC samples of clusterings from a Dirichlet process scale-location mixture model with normal components fitted to the galaxies
dataset.
1 |
The matrix galaxy.draw
has 10,000 rows and 82 columns, with each row representing a MCMC posterior sample of the clustering of the 82 data points.
Roeder, K. (1990) Density estimation with confidence sets exemplified by superclusters and voids in the galaxies, Journal of the American Statistical Association, 85: 617-624.
Wade, S. and Ghahramani, Z. (2015) Bayesian cluster analysis: Point estimation and credible balls. Submitted. arXiv:1505.03339.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | data(galaxy.fit)
x=data.frame(x=galaxy.fit$x)
data(galaxy.pred)
data(galaxy.draw)
# Find representative partition of posterior
psm=comp.psm(galaxy.draw)
galaxy.VI=minVI(psm,galaxy.draw,method=("all"),include.greedy=TRUE)
summary(galaxy.VI)
plot(galaxy.VI,data=x,dx=galaxy.fit$fx,xgrid=galaxy.pred$x,dxgrid=galaxy.pred$fx)
# Uncertainty in partition estimate
galaxy.cb=credibleball(galaxy.VI$cl[1,],galaxy.draw)
summary(galaxy.cb)
plot(galaxy.cb,data=x,dx=galaxy.fit$fx,xgrid=galaxy.pred$x,dxgrid=galaxy.pred$fx)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.