Description Usage Arguments Value See Also Examples
View source: R/eff.ini.maxeig.tri.R
Calculate the maximal eigenpair for the tridiagonal matrix by rayleigh quotient iteration algorithm.
1  | eff.ini.maxeig.tri(a, b, c, xi = 1, digit.thresh = 6)
 | 
a | 
 The lower diagonal vector.  | 
b | 
 The upper diagonal vector.  | 
c | 
 The shifted main diagonal vector. The corresponding unshift diagonal vector is -c(b[1] + c[1], a[1:N - 1] + b[2:N] + c[2:N], a[N] + c[N + 1]) where N+1 is the dimension of matrix.  | 
xi | 
 The coefficient used to form the convex combination of δ_1^{-1} and (v_0,-Q*v_0)_μ, it should between 0 and 1.  | 
digit.thresh | 
 The precise level of output results.  | 
A list of eigenpair object are returned, with components z, v and iter.
z | 
 The approximating sequence of the maximal eigenvalue.  | 
v | 
 The approximating eigenfunction of the corresponding eigenvector.  | 
iter | 
 The number of iterations.  | 
eff.ini.maxeig.shift.inv.tri for the tridiagonal matrix 
maximal eigenpair by shifted inverse iteration algorithm.
eff.ini.maxeig.general for the general matrix maximal eigenpair.
1 2 3 4 5  | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.