## library(brms)
## set.seed(1234)
## dat <- data.frame(
## count = rpois(236, lambda = 20),
## visit = factor(rep(1:4, each = 59)),
## patient = factor(rep(1:59, 4)),
## Age = rnorm(236),
## Trt = factor(sample(0:1, 236, TRUE)),
## AgeSD = abs(rnorm(236, 1)),
## Exp = factor(sample(1:5, 236, TRUE), ordered = TRUE),
## volume = rnorm(236),
## gender = factor(c(rep("m", 30), rep("f", 29)))
## )
## warmup <- 150
## iter <- 200
## chains <- 1
## stan_model_args <- list(save_dso = FALSE)
## brmsfit_example1 <- brm(
## bf(count ~ Trt*Age + mo(Exp) + s(Age) + volume +
## offset(Age) + (1+Trt|visit) + arma(visit, patient),
## sigma ~ Trt),
## data = dat, family = student(),
## prior = set_prior("normal(0,2)", class = "b") +
## set_prior("cauchy(0,2)", class = "sd") +
## set_prior("normal(0,3)", dpar = "sigma"),
## sample_prior = TRUE,
## warmup = warmup, iter = iter, chains = chains,
## stan_model_args = stan_model_args, rename = TRUE,
## save_pars = save_pars(all = TRUE),
## backend = "rstan"
## )
## test_that("priorsense_data is created", {
## expect_s3_class(
## create_priorsense_data(
## brmsfit_example1
## ),
## "priorsense_data"
## )
## }
## )
## test_that("powerscale returns powerscaled_draws", {
## expect_s3_class(
## powerscale(
## x = brmsfit_example1,
## component = "prior",
## alpha = 0.8
## ),
## "powerscaled_draws"
## )
## expect_s3_class(
## powerscale(
## x = brmsfit_example1,
## component = "likelihood",
## alpha = 1.3,
## prediction = \(x) priorsense::predictions_as_draws(x, brms::posterior_epred),
## moment_match = TRUE
## ),
## "powerscaled_draws"
## )
## }
## )
## test_that("powerscale_sequence returns powerscaled_sequence", {
## expect_s3_class(
## suppressWarnings(powerscale_sequence(
## x = brmsfit_example1
## )),
## "powerscaled_sequence"
## )
## }
## )
## test_that("powerscale_sensitivity returns powerscaled_sensitivity_summary", {
## expect_s3_class(
## powerscale_sensitivity(
## x = brmsfit_example1
## ),
## "powerscaled_sensitivity_summary"
## )
## }
## )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.