# test strategy:
# QFT only
library(dplyr)
library(reshape2)
library(assertthat)
library(purrr)
library(heemod)
library(CEdecisiontree)
load(here::here("data", "params.RData")) #create_param_values()
load(here::here("data", "trees.RData")) #create_trees()
load("data/state_lists.RData")
# decision tree ----
tree_dat <-
create_ce_tree_long_df(
tree_list = QFT_tree,
label_probs = label_probs,
label_costs = label_costs,
label_health = label_health,
pname_from_to = QFT_pname_from_to,
cname_from_to = QFT_cname_from_to,
hname_from_to = QFT_hname_from_to)
state_list <- state_lists$QFT
dt <-
run_cedectree(tree_dat,
label_probs_distns,
label_costs_distns,
label_health_distns,
state_list)
write.csv(tree_dat, file = "data/tree_dat_QFT.csv")
save(dt, file = "data/run_cedectree_QFT.RData")
###############################
# Markov model
dt <- readRDS(file = "data/run_cedectree_QFT.RDS")
heemod_params <-
list(pReact = label_probs$pReact,
pReact_incomp = label_probs$pReact_incomp,
pReact_comp = label_probs$pReact_comp,
TB_cost = label_costs$TB_cost)
heemod_model <- do.call(create_ltbi_heemod,
args = heemod_params)
# # from Excel for testing
# # check same results
# term_pop_point <-
# list(
# no_LTBI = 738.45,
# LTBI_complete_Tx = 155.44,
# LTBI_incomplete_Tx = 39.25,
# LTBI_no_Tx = 66.87,
# activeTB = 0,
# dead = 0)
#
# # points values
# heemod_model(
# unname(unlist(term_pop_point)/1000))
# # point values
# starting_state_props <- unname(unlist(dt$cost$term_pop_point))
# res_mm_pt <- heemod_model(starting_state_props)
res_mm <-
heemod_init_pop_PSA(
heemod_model,
init_states = dt$cost$term_pop_sa)
# extract the cost and utility values
c_mm <- map_df(res_mm, "run_model")$cost
h_mm <- map_df(res_mm, "run_model")$utility
## combine decision tree and Markov model output
# summary_mm <- summary(res_mm_pt)$res_values
#
# res_pt <-
# list(cost = summary_mm$cost + dt$cost$ev_point[[1]],
# health = summary_mm$utility + dt$health$ev_point[[1]])
res <-
list(cost =
c_mm + dt$cost$ev_sa[, 1],
health =
h_mm - dt$health$ev_sa[, 1])
# map(res, median)
# summary(dt$cost$ev_sa[[1]])
# summary(dt$health$ev_sa[[1]])
saveRDS(res, file = "data/res_QFT.RDS")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.