# tests ---------------
# simple test data
trans_mat2 <-
trans_mat2 %>%
filter(age == 514,
NPFS_weeks_window == 2)
trans_mat_testdata <- edit(trans_mat2)
# treat everyone
scenario_all <-
trans_mat_testdata %>%
Ec_by_age_window(spec_NPFS = 0,
sens_NPFS = 1,
spec_GP = 0,
sens_GP = 1,
c_testNPFS = 0,
c_testGP = 0)
scenario_all
#
#
# ppv tests
#
# treat no-one
scenario_nothing <-
trans_mat_testdata %>%
Ec_by_age_window(spec_NPFS = 1,
sens_NPFS = 0,
spec_GP = 1,
sens_GP = 0,
c_testNPFS = 0,
c_testGP = 0)
scenario_nothing
# no H1N1 then
# dont avoid any hospital cost
# needlessly treat people
# no QALY loss
#
# scenario_all$c > scenario_nothing$c
# treament cost*p.seekcare
# mm <-
# trans_mat_testdata %>%
# filter(to %in% c("flu", "Sx", "NPFS_H1N1", "NPFS_notH1N1", "GP_H1N1", "GP_notH1N1")) %>%
# group_by(from) %>%
# dplyr::summarise(prob = sum(prob))
#
# # expected cost due to treatment
# 15.41*prod(mm$prob)
# all H1N1 then
# treating avoid some hospital cost
# treating avoids some QALY loss
# cost:
# all hosp, all death
c_GP + c_collect + c_death + c_hosp
37 + 15.41 + 1500 + 840
37 + 1500 + 840
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.