# pop counts plot
# stacked percentage bar plot
library(ggplot2)
library(gridExtra)
library(reshape2)
library(dplyr)
# CohortDrug
plot_drug <-
melt(pop[2, , ]) %>%
mutate(state = factor(state,
levels = c("Dead", "Progressive_disease", "Asymptomatic_disease")))
ggplot(plot_drug, aes(fill = state, y = value, x = cycle)) +
geom_bar(position = "fill", stat = "identity", width = 1) +
scale_x_continuous(breaks = 1:44) +
ylab("Percentage of cohort")
# COhortNoDrug
plot_free <-
melt(pop[1, , ]) %>%
mutate(state = factor(state,
levels = c("Dead", "Progressive_disease", "Asymptomatic_disease")))
ggplot(plot_free, aes(fill = state, y = value, x = cycle)) +
geom_bar(position = "fill", stat = "identity", width = 1) +
scale_x_continuous(breaks = 1:44) +
ylab("Percentage of cohort")
# combine
total_dat <- rbind(cbind(strat = "drug", plot_drug),
cbind(strat = "free", plot_free))
facet_plot <-
ggplot(total_dat, aes(fill = state, y = value, x = cycle)) +
geom_bar(position = "fill", stat = "identity", width = 1) +
scale_x_continuous(breaks = seq(0, 44, by = 2)) +
ylab("Percentage of cohort") +
facet_grid(.~strat) +
theme_grey()
facet_plot
# ggsave(facet_plot, file = "images/state_pop_over_time.png")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.