bttdSoftImpute: bttdSoftImpute

Description Usage Arguments Details Value

Description

bttdSoftImpute implements block tensor train decomposition for missing data estimation. It extends the SoftImpute method for matrix data imputation to higher-order tensor data.

Usage

1
2
3
bttdSoftImpute(Y, lambda = 0, rank_Y = 2, ttrank_max = 100,
  tol_dx = 1e-05, tol_df = 1e-05, tol_f = 0, maxit = 100,
  verbose = FALSE, X0 = NULL, method = "ALS")

Arguments

Y

A sparse matrix format with attributes $i, $j, $v, $nrow, $ncol, and $dimnames, which are [nnz]-vector, [nnz x N]-matrix, [nnz]-vector, scalar, [N]-vector, and list, respectively.

rank_Y

The rank of the estimated low rank matrix, X.

ttrank_max

The maximal TT rank of right singular vectors, X$v.

Details

Last modified: 2018.01.15. by Namgil Lee (Kangwon National University)

Value

X = list(u, d, v), v is in block TT format


namgillee/BTTSoftImpute documentation built on July 2, 2019, 8:35 p.m.