Description Usage Arguments Details Value Author(s) References See Also Examples
Estimate Rasch model, including a common discrimination parameter for all items, approximating the marginal log-likelihood using Laplace approximation.
1 |
items |
Numeric matrix (or data.frame) containing only zeroes and ones (J columns). |
init |
Optional numeric vector of initial values at which initialize numerical optimization (length J+1). |
fixed |
Optional numeric vector (length J). If supplied, only NA entries in fixed will be estimated. |
Optimizes raschdlikLA
numericaly via nlminb
. Rows containing at least one NA
are removed from items
. Standard errors of model parameters are approximated by inverting the observed information matrix.
An object of class rasch
is a list containing the following componentes:
call |
The matched call |
coef |
A named vector of coefficients |
iter |
Number of iterations used to optimize de log-likelihood |
loglik |
The log-likelihood value |
vcov |
The variance-covariance matrix of the estimated parameters |
items |
The item matrix |
beta |
(Only when regression terms are included) the estimated regression parameters |
linpred |
(Only when regression terms are included) prediction covariates |
Fernando Massa, fmassa@iesta.edu.uy
rasch1960raschreg
\insertRefbaker2004raschreg
rasch
, raschdreg
, raschreg
, irt2p
, irt2preg
1 2 3 4 | |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.