Description Usage Arguments Details Value Author(s) References See Also Examples
Estimate the two parameter logistic model incorporating regression variables for the abiity parameter, approximating the marginal log-likelihood using Laplace approximation.
| 1 | 
| items | Numeric matrix (or data.frame) containing only zeroes and ones (J columns). | 
| f_reg | A one sided regression formula indicating the explanatory variables for the ability parameter. | 
| z_reg | A data frame containing explanatory variables indicated in  | 
| init | Optional numeric vector of initial values at which initialize numerical optimization. | 
Optimizes raschreglikLA numericaly via nlminb. Rows containing at least one NA, whether in items or x_reg, are removed from both. Standard errors of model parameters are approximated by inverting the observed information matrix.
An object of class rasch is a list containing the following componentes:
| call | The matched call | 
| coef | A named vector of coefficients | 
| iter | Number of iterations used to optimize de log-likelihood | 
| loglik | The log-likelihood value | 
| vcov | The variance-covariance matrix of the estimated parameters | 
| items | The item matrix | 
| beta | (Only when regression terms are included) the estimated regression parameters | 
| linpred | (Only when regression terms are included) prediction covariates | 
Fernando Massa, fmassa@iesta.edu.uy
rasch1960raschreg
\insertRefbaker2004raschreg
\insertRefdeboeck2004raschreg
rasch, raschd, raschreg, raschdreg, irt2p
| 1 2 3 4 5 6 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.