Description Usage Arguments Value Examples
Each of these functions first group the data using dplyr::group_by() and then:
mutate_groups(): Apply calculations using dplyr::mutate().
transmute_groups(): Apply calculations using dplyr::transmute().
summarise_groups(): Summarise the data by applying calculations using dplyr::summarise().
arrange_groups(): Order the data using dplyr::arrange() with .by_group = TRUE.
The respective output is ungrouped.
1 2 3 4 5 6 7 8 9 | mutate_groups(.data, .groups, ...)
summarise_groups(.data, .groups, ...)
summarize_groups(.data, .groups, ...)
transmute_groups(.data, .groups, ...)
arrange_groups(.data, .groups, ...)
|
.data |
A |
.groups |
|
... |
Arguments to pass onto the respective function. |
A tbl_spark or a data.frame depending on the input, .data.
1 2 3 4 5 6 7 8 | mtcars %>%
mutate_groups(.groups = c("am", "cyl"), avgMpg = mean(mpg))
mtcars %>%
summarise_groups(.groups = c("am", "cyl"), avgMpg = mean(mpg))
# Additional arguments can still be passed to the dplyr functions
mtcars %>%
mutate_groups(.groups = "am", avgMpg = mean(mpg), .before = mpg)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.