runEscape | R Documentation |
'runEscape()' is a convenience wrapper around [escape.matrix()] that computes enrichment scores and inserts them as a new assay (default '"escape"') in a Seurat or SingleCellExperiment object. All arguments (except 'new.assay.name') map directly to their counterparts in 'escape.matrix()'.
runEscape(
input.data,
gene.sets,
method = c("ssGSEA", "GSVA", "UCell", "AUCell"),
groups = 1000,
min.size = 5,
normalize = FALSE,
make.positive = FALSE,
new.assay.name = "escape",
min.expr.cells = 0,
min.filter.by = NULL,
BPPARAM = NULL,
...
)
input.data |
A raw‐counts matrix ('genes × cells'), a Seurat object, or a SingleCellExperiment. Gene identifiers must match those in 'gene.sets'. |
gene.sets |
A named list of character vectors, the result of [getGeneSets()], or the built-in data object [escape.gene.sets]. List names become column names in the result. |
method |
Scoring algorithm (case-insensitive). One of '"GSVA"', '"ssGSEA"', '"UCell"', or '"AUCell"'. Default **'"ssGSEA"'**. |
groups |
Integer >= 1. Number of cells per processing chunk. Larger values reduce overhead but increase memory usage. Default **1000**. |
min.size |
Minimum number of genes from a set that must be detected in the expression matrix for that set to be scored. Default **5**. Use 'NULL' to disable filtering. |
normalize |
Logical. If 'TRUE', the score matrix is passed to [performNormalization()] (drop-out scaling and optional log transform). Default **FALSE**. |
make.positive |
Logical. If 'TRUE' *and* 'normalize = TRUE', shifts every gene-set column so its global minimum is zero, facilitating downstream log-ratio analyses. Default **FALSE**. |
new.assay.name |
Character. Name for the assay that will store the enrichment matrix in the returned object. Default **"escape"**. |
min.expr.cells |
Numeric. Gene-expression filter threshold (see details above). Default **0** (no gene filtering). |
min.filter.by |
Character or 'NULL'. Column name in 'meta.data' (Seurat) or 'colData' (SCE) defining groups within which the 'min.expr.cells' rule is applied. Default **'NULL'**. |
BPPARAM |
A BiocParallel parameter object describing the parallel backend. |
... |
Extra arguments passed verbatim to the chosen back-end scoring function ('gsva()', 'ScoreSignatures_UCell()', or 'AUCell_calcAUC()'). |
The input single-cell object with an additional assay containing the enrichment scores ('cells × gene-sets'). Matrix orientation follows standard single-cell conventions (gene-sets as rows inside the assay).
Nick Borcherding, Jared Andrews
[escape.matrix()] for the underlying computation, [performNormalization()] to add normalized scores, [heatmapEnrichment()], [ridgeEnrichment()] and related plotting helpers for visualization.
gs <- list(Bcells = c("MS4A1", "CD79B", "CD79A", "IGH1", "IGH2"),
Tcells = c("CD3E", "CD3D", "CD3G", "CD7","CD8A"))
sce <- SeuratObject::pbmc_small
sce <- runEscape(sce,
gene.sets = gs,
method = "GSVA",
groups = 1000,
min.size = 3,
new.assay.name = "escape")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.