Description Usage Arguments Details Value See Also
View source: R/evaluate_ident.R
This function is a simple wrapper for EvaluateIdentKmeans,
facilitating unsupervised evaluation of cell identities.
1 2 | EvaluateIdent(object, genes.use = NULL, clustering = "kmeans",
data.cut = NULL, do.plot = FALSE, seed = 1, ...)
|
object |
Seurat object |
genes.use |
Genes to use for clustering |
clustering |
Clustering method to use |
data.cut |
Clip all z-scores to have an absolute value below this Reduces the effect of huge outliers in the data. (default is NULL) |
do.plot |
Draw histograms of statistics (default is FALSE) |
seed |
Random seed |
... |
Additional parameters passed to |
First, run K-means clustering or mini-batch K-means clustering using ClusterCellsKmeans,
which computes computationally defined cell identities, ident in the Seurat object.
Second, run this function with the aforementioned Seurat object.
Ensure that the same parameters (reduction.type, dims.use, k.param, ...)
are used.
Seurat object where the unsupervised evaluation for cell identities is stored in
object@ident_prob. Furthermore, chosen probabilities (PIP, adjusted p-values, or etc) are
stored in object@meta.data["ident_prob"]. See the optional argument prob.use.
EvaluateIdentKmeans
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.