View source: R/metricsAnalysis.R
getRSKCAlpha | R Documentation |
Computes the proportion of the cases to be trimmed in robust sparse K-means, 0 <= alpha <= 1, see RSKC
.
getRSKCAlpha(df, k, L1, max_alpha = 0.1, seed = NULL)
df |
Input data frame. The first column denotes the identifier of the evaluated individuals. The remaining columns contain the metrics used to evaluate the individuals. Rows with NA values will be ignored. |
k |
K value (number of clusters) |
L1 |
A single L1 bound on weights (the feature weights), see |
max_alpha |
Maximum value of alpha, iterating over seq(0, max_alpha, 0.05). Default is 0.1. |
seed |
Random seed to be used. |
Best suitable alpha.
data("ontMetrics")
alpha = getRSKCAlpha(ontMetrics, k=3, L1=2, seed=100)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.