ui_DIF_cumulative <- tabPanel(
"Cumulative logit",
tabsetPanel(
# ** Summary ####
tabPanel(
"Summary",
h3("Cumulative logit model for DIF detection"),
p("Cumulative logit regression allows for detection of uniform and non-uniform DIF among ordinal data by
adding a group-membership variable (uniform DIF) and its interaction with observed score
(non-uniform DIF) into a model for item \\(i\\) and by testing for their significance."),
h4("Method specification"),
p("Here you can change the ", strong("type"), " of DIF to be tested, the ", strong("Observed score", .noWS = "outside"),
", and the ", strong("parametrization"), "- either the IRT or the classical intercept/slope. You can also
select a ", strong("correction method"), " for a multiple comparison and/or ", strong("item purification. ")),
fluidRow(
column(
3,
radioButtons(
inputId = "DIF_cumulative_summary_type",
label = "Type",
choices = c(
"\\(H_{0}\\): No DIF vs. \\(H_{1}\\): Any DIF" = "both",
"\\(H_{0}\\): No DIF vs. \\(H_{1}\\): Uniform DIF" = "udif",
"\\(H_{0}\\): Uniform DIF vs. \\(H_{1}\\): Non-uniform DIF" = "nudif"
),
selected = "both"
)
),
column(
2,
selectInput(
inputId = "DIF_cumulative_summary_matching",
label = "Observed score",
choices = c(
"Total score" = "score",
"Standardized total score" = "zscore"
),
selected = "zscore"
)
),
column(
2,
selectInput(
inputId = "DIF_cumulative_summary_parametrization",
label = "Parametrization",
choices = c(
"Intercept/slope" = "classic",
"IRT" = "irt"
),
selected = "irt"
)
),
column(
2,
selectInput(
inputId = "DIF_cumulative_summary_correction",
label = "Correction method",
choices = c(
"Benjamini-Hochberg" = "BH",
"Benjamini-Yekutieli" = "BY",
"Bonferroni" = "bonferroni",
"Holm" = "holm",
"Hochberg" = "hochberg",
"Hommel" = "hommel",
"None" = "none"
),
selected = "none"
),
checkboxInput(
inputId = "DIF_cumulative_summary_purification",
label = "Item purification",
value = FALSE
)
)
),
h4("Equation"),
p("The probability that respondent ", strong("\\(p\\)"), " with the observed score (e.g., standardized total
score) ", strong("\\(Z_p\\)"), " and the group membership variable ", strong("\\(G_p\\)"), " obtained at least ",
strong("\\(k\\)"), " points in item ", strong("\\(i\\)"), " is given by the following equation: "),
fluidRow(column(12, align = "center", uiOutput("DIF_cumulative_summary_equation_cumulative"))),
p("The probability that respondent ", strong("\\(p\\)"), " with the observed score (e.g., standardized total
score) ", strong("\\(Z_p\\)"), " and group membership ", strong("\\(G_p\\)"), " obtained exactly ", strong("\\(k\\)"),
" points in item ", strong("\\(i\\)"), " is then given as the difference between the probabilities of obtaining at least",
strong("\\(k\\)"), " and ", strong("\\(k + 1\\)"), "points: "),
fluidRow(column(12, align = "center", uiOutput("DIF_cumulative_summary_equation_category"))),
h4("Summary table"),
p("This summary table contains information about \\(\\chi^2\\)-statistics of the likelihood ratio test, corresponding
\\(p\\)-values considering selected correction method, and significance codes. The table also provides estimated parameters
for the best fitted model for each item. "),
uiOutput("DIF_cumulative_summary_NA_warning"),
strong(textOutput("DIF_cumulative_summary_dif_items")),
br(),
tags$head(tags$style("#DIF_cumulative_summary_coef {white-space: nowrap;}")),
fluidRow(column(12, align = "left", tableOutput("DIF_cumulative_summary_coef"))),
fluidRow(column(12, align = "left", uiOutput("DIF_cumulative_summary_table_note"))),
br(),
fluidRow(column(2, downloadButton(outputId = "DIF_cumulative_summary_table_download", label = "Download table"))),
br(),
h4("Purification process"),
textOutput("DIF_cumulative_summary_purification_info"),
br(),
tags$head(tags$style("#DIF_cumulative_summary_purification_table {white-space: nowrap;}")),
fluidRow(column(12, align = "center", tableOutput("DIF_cumulative_summary_purification_table"))),
conditionalPanel(
"input.DIF_cumulative_summary_purification == 1",
downloadButton(outputId = "DIF_cumulative_summary_purification_table_download", label = "Download table"),
br(),
br()
),
h4("Selected R code"),
code(includeText("sc/dif/cum.R"))
),
# ** Items ####
tabPanel("Items",
value = "cumulative_it",
h3("Cumulative logit model for DIF detection"),
p("Cumulative logit regression allows for detection of uniform and non-uniform DIF among ordinal data by
adding a group-membership variable (uniform DIF) and its interaction with observed score
(non-uniform DIF) into a model for item \\(i\\) and by testing for their significance."),
h4("Method specification"),
p("Here you can change the ", strong("type"), " of DIF to be tested, the ", strong("Observed score", .noWS = "outside"),
", and the ", strong("parametrization"), "- either the IRT or classical intercept/slope. You can also
select a ", strong("correction method"), " for a multiple comparison and/or ", strong("item purification. ")),
fluidRow(
column(
3,
radioButtons(
inputId = "DIF_cumulative_items_type",
label = "Type",
choices = c(
"\\(H_{0}\\): No DIF vs. \\(H_{1}\\): Any DIF" = "both",
"\\(H_{0}\\): No DIF vs. \\(H_{1}\\): Uniform DIF" = "udif",
"\\(H_{0}\\): Uniform DIF vs. \\(H_{1}\\): Non-uniform DIF" = "nudif"
),
selected = "both"
)
),
column(
2,
selectInput(
inputId = "DIF_cumulative_items_matching",
label = "Observed score",
choices = c(
"Total score" = "score",
"Standardized total score" = "zscore"
),
selected = "zscore"
)
),
column(
2,
selectInput(
inputId = "DIF_cumulative_items_parametrization",
label = "Parametrization",
choices = c(
"Intercept/slope" = "classic",
"IRT" = "irt"
),
selected = "irt"
)
),
column(
2,
selectInput(
inputId = "DIF_cumulative_items_correction",
label = "Correction method",
choices = c(
"Benjamini-Hochberg" = "BH",
"Benjamini-Yekutieli" = "BY",
"Bonferroni" = "bonferroni",
"Holm" = "holm",
"Hochberg" = "hochberg",
"Hommel" = "hommel",
"None" = "none"
),
selected = "none"
),
checkboxInput(
inputId = "DIF_cumulative_items_purification",
label = "Item purification",
value = FALSE
)
),
column(
2,
sliderInput(
inputId = "DIF_cumulative_items",
label = "Item",
min = 1,
value = 1,
max = 10,
step = 1,
animate = animationOptions(interval = 1600)
)
)
),
uiOutput("DIF_cumulative_items_NA_warning"),
h4("Plot with estimated DIF curves"),
p("Points represent a proportion of the obtained score with respect to the observed score. Their size is determined
by the count of respondents who achieved a given level of the observed score and who selected given option with
respect to the group membership."),
splitLayout(
cellWidths = c("50%", "50%"),
plotlyOutput("DIF_cumulative_items_plot_cumulative"),
plotlyOutput("DIF_cumulative_items_plot_category")
),
splitLayout(
cellWidths = c("50%", "50%"),
downloadButton("DIF_cumulative_items_plot_cumulative_download", label = "Download figure"),
downloadButton("DIF_cumulative_items_plot_category_download", label = "Download figure")
),
h4("Equation"),
fluidRow(column(12, align = "center", uiOutput("DIF_cumulative_items_equation_cumulative"))),
fluidRow(column(12, align = "center", uiOutput("DIF_cumulative_items_equation_category"))),
h4("Table of parameters"),
p("This table summarizes estimated item parameters together with the standard errors. "),
fluidRow(column(12, align = "center", tableOutput("DIF_cumulative_items_coef"))),
br(),
h4("Selected R code"),
code(includeText("sc/dif/cum_it.R"))
)
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.