#' Calculate revenue accounting matrix for each day and user
#' @description It calculates the accounting matrix given date, subscription data.
#' @param dates a date vector (have to be date type)
#' @param datall_revenue subscription data, need to have columns: user_id, Effective_Start, Effective_End, MRR
#' @return A revenue accounting matrix is returned for each day and user
#' @author Hui Lin, \email{longqiman@gmail.com}
#' @examples
#' \dontrun{
#' res = RevActUser(total_revenue, dates)
#' }
#' @export
RevActUser <- function(datall_revenue, dates){
dat <- total_revenue %>%
# change this filter to get result for different products
# filter(Product %in% type)%>%
transmute(user_id=user_id,
MRR= MRR,
Effective_Start = as.Date(Effective_Start),
Effective_End = as.Date(Effective_End))
res_test = do.call("rbind",
lapply(dates, function(time_point){
# current month is from the 1nd day to the last day each month
int_start = floor_date(time_point, unit = "month")
int_end = time_point
current = interval(int_start, int_end) # current month
# calculate new revenue which is from new customer this month
active_current <- dat %>%
filter(Effective_Start <= time_point) %>%
filter(is.na(Effective_End) | Effective_End > time_point) %>%
group_by(user_id) %>%
summarise(MRR = round(sum(MRR), 2)) %>%
select(user_id, MRR_current = MRR)
# previous month
int_start = floor_date(time_point, unit = "month") %m-% months(1)
int_end = ceiling_date(int_start, unit = "month") - days(1)
previous = interval(int_start, int_end)
active_last_month <- dat %>%
filter(Effective_Start <= int_end) %>%
filter(is.na(Effective_End) | Effective_End > int_end) %>%
group_by(user_id) %>%
summarise(MRR = round(sum(MRR), 2)) %>%
select(user_id, MRR_last_month = MRR)
# all before until previous month
int_start = time_point %m-% months(12*100)
int_end = floor_date(time_point, unit = "month") %m-% months(1)
int_end = int_end - days(1)
past = interval(int_start, int_end)
active_past <- dat %>%
filter(Effective_Start <= int_end) %>%
filter(is.na(Effective_End) | Effective_End > int_end ) %>%
group_by(user_id) %>%
summarise(MRR = round(sum(MRR), 2)) %>%
select(user_id, MRR_past = MRR)
alltable <- merge(active_current, active_last_month, all = T) %>%
merge(active_past, all=T)
########################## Break out the revenue ###########################
# current month is from the 1nd day to the last day each month
new <- alltable %>%
filter( (is.na(MRR_past) | MRR_past <= 0) & (is.na(MRR_last_month) | MRR_last_month <= 0 ) ) %>%
select(user_id, new = MRR_current )
resurrected <- alltable %>%
filter( (!is.na(MRR_current)) & MRR_current > 0 )%>%
filter( is.na(MRR_last_month) | MRR_last_month <= 0) %>%
filter( (!is.na(MRR_past)) & MRR_past > 0 ) %>%
select(user_id,resurrected = MRR_current)
# an alternative way is to add up the smaller number from MRR_current and MRR_last_month
retain1 <- alltable %>%
filter( (!is.na(MRR_current)) & MRR_current > 0 ) %>%
filter( (!is.na(MRR_last_month)) & MRR_last_month > 0 )%>%
filter(MRR_current >= MRR_last_month) %>%
select(user_id,retain1 = MRR_last_month)
retain2 <- alltable %>%
filter( (!is.na(MRR_current)) & MRR_current > 0 ) %>%
filter( (!is.na(MRR_last_month)) & MRR_last_month > 0 )%>%
filter(MRR_current < MRR_last_month) %>%
select(user_id,retain2 = MRR_current)
retain = merge(retain1, retain2, all=T) %>%
impute0()%>%
transmute(user_id = user_id, retain = retain1 + retain2)
expansion <- alltable %>%
filter( (!is.na(MRR_current)) & MRR_current > 0 ) %>%
filter( (!is.na(MRR_last_month)) & MRR_last_month > 0 )%>%
filter(MRR_current > MRR_last_month) %>%
impute0()%>%
transmute(user_id = user_id, expansion = MRR_current-MRR_last_month)
contraction <- alltable %>%
filter( (!is.na(MRR_current)) & MRR_current > 0 )%>%
filter( (!is.na(MRR_last_month)) & MRR_last_month > 0 ) %>%
filter(MRR_current < MRR_last_month) %>%
impute0()%>%
transmute(user_id = user_id, contraction = MRR_last_month-MRR_current)
churn <- alltable %>%
filter( is.na(MRR_current) | MRR_current <= 0 ) %>%
filter( (!is.na(MRR_last_month)) & MRR_last_month > 0 ) %>%
transmute(user_id = user_id, churn =MRR_last_month)
res0 = merge(new, resurrected, all = T)
res0 = merge(res0, retain, all = T)
res0 = merge(res0, expansion, all = T)
res0 = merge(res0, contraction, all = T)
res0 = merge(res0, churn, all = T)
res0 = impute0(res0)
res0$date = time_point
res0 = res0 %>% filter( !(new == 0 & resurrected == 0 & retain == 0 & expansion == 0 & contraction == 0 & churn == 0) )
return(res0)
}
) )
return(res_test)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.