#' Calculate metered revenue accounting matrix per day, user and product
#' @description It calculates the accounting matrix for each user and product given date, subscription data and product category.
#' @param dates a date vector (have to be date type)
#' @param datall_revenue subscription data, need to have columns: user_id, Product, Effective_Start, one_time_charge
#' @param type a vector of product names
#' @return A metered revenue accounting matrix is returned for each day, user and product
#' @author Hui Lin, \email{longqiman@gmail.com}
#' @export
MeterRevActUserProduct <- function(datall_revenue, dates, type){
dat <- datall_revenue %>%
## change this filter to get result for different products
filter(Product %in% type)%>%
transmute(user_id=user_id,
one_time_charge = one_time_charge,
Effective_Start = as.Date(Effective_Start))
# function to impute 0 to missing value
impute0 = function(dat) {
for (i in 2:ncol(dat)){
idx = which(is.na(dat[,i]))
if(length(idx)>0){
dat[idx,i] = 0
}
}
return(dat)
}
res = NULL
for (i in 1:length(dates)){
# current month is from the 1nd day to the last day each month
int_start = floor_date(dates[i], unit = "month")
int_end = dates[i]
current = interval(int_start, int_end) # current month
# calculate new revenue which is from new customer this month
active_current <- dat %>%
filter(Effective_Start %within% current) %>%
group_by(user_id) %>%
summarise(one_time_charge = round(sum(one_time_charge), 2)) %>%
select(user_id, one_time_charge_current = one_time_charge)
# previous month
int_start = floor_date(dates[i], unit = "month") %m-% months(1)
int_end = ceiling_date(int_start, unit = "month") - days(1)
previous = interval(int_start, int_end)
active_last_month <- dat %>%
filter(Effective_Start %within% previous) %>%
group_by(user_id) %>%
summarise(one_time_charge = round(sum(one_time_charge), 2)) %>%
select(user_id, one_time_charge_last_month = one_time_charge)
# all before until previous month
int_start = dates[i] %m-% months(12*100)
int_end = floor_date(dates[i], unit = "month") %m-% months(1)
int_end = int_end - days(1)
past = interval(int_start, int_end)
active_past <- dat %>%
filter(Effective_Start %within% past) %>%
group_by(user_id) %>%
summarise(one_time_charge = round(sum(one_time_charge), 2)) %>%
select(user_id, one_time_charge_past = one_time_charge)
alltable <- merge(active_current, active_last_month, all = T) %>%
merge(active_past, all=T)
########################## Break out the revenue ###########################
# current month is from the 1nd day to the last day each month
new <- alltable %>%
filter( (is.na(one_time_charge_past) | one_time_charge_past <= 0) & (is.na(one_time_charge_last_month) | one_time_charge_last_month <= 0 ) ) %>%
select(user_id, new = one_time_charge_current )
resurrected <- alltable %>%
filter( (!is.na(one_time_charge_current)) & one_time_charge_current > 0 )%>%
filter( is.na(one_time_charge_last_month) | one_time_charge_last_month <= 0) %>%
filter( (!is.na(one_time_charge_past)) & one_time_charge_past > 0 ) %>%
select(user_id,resurrected = one_time_charge_current)
# an alternative way is to add up the smaller number from MRR_current and MRR_last_month
retain1 <- alltable %>%
filter( (!is.na(one_time_charge_current)) & one_time_charge_current > 0 ) %>%
filter( (!is.na(one_time_charge_last_month)) & one_time_charge_last_month > 0 )%>%
filter(one_time_charge_current >= one_time_charge_last_month) %>%
select(user_id,retain1 = one_time_charge_last_month)
retain2 <- alltable %>%
filter( (!is.na(one_time_charge_current)) & one_time_charge_current > 0 ) %>%
filter( (!is.na(one_time_charge_last_month)) & one_time_charge_last_month > 0 )%>%
filter(one_time_charge_current < one_time_charge_last_month) %>%
select(user_id,retain2 = one_time_charge_current)
retain = merge(retain1, retain2, all=T) %>%
impute0()%>%
transmute(user_id = user_id, retain = retain1 + retain2)
expansion <- alltable %>%
filter( (!is.na(one_time_charge_current)) & one_time_charge_current > 0 ) %>%
filter( (!is.na(one_time_charge_last_month)) & one_time_charge_last_month > 0 )%>%
filter(one_time_charge_current > one_time_charge_last_month) %>%
impute0()%>%
transmute(user_id = user_id, expansion = one_time_charge_current-one_time_charge_last_month)
contraction <- alltable %>%
filter( (!is.na(one_time_charge_current)) & one_time_charge_current > 0 )%>%
filter( (!is.na(one_time_charge_last_month)) & one_time_charge_last_month > 0 ) %>%
filter(one_time_charge_current < one_time_charge_last_month) %>%
impute0()%>%
transmute(user_id = user_id, contraction =one_time_charge_last_month - one_time_charge_current)
churn <- alltable %>%
filter( is.na(one_time_charge_current) | one_time_charge_current <= 0 ) %>%
filter( (!is.na(one_time_charge_last_month)) & one_time_charge_last_month > 0 ) %>%
transmute(user_id = user_id, churn =one_time_charge_last_month)
res0 = merge(new, resurrected, all = T)
res0 = merge(res0, retain, all = T)
res0 = merge(res0, expansion, all = T)
res0 = merge(res0, contraction, all = T)
res0 = merge(res0, churn, all = T)
res0 = impute0(res0)
res0$date = dates[i]
res = rbind(res, res0)
res = res %>% filter( !(new == 0 & resurrected == 0 & retain == 0 & expansion == 0 & contraction == 0 & churn == 0) )
}
return(res)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.