knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", fig.width = 6, out.width = "100%" ) devtools::load_all(".")
Contains data for ggseg and ggseg3d for the JHU white matter segmentation.
Hua et al. (2008) NeuroImage, 39(1):336-347 pubmed
You can install the released version of ggsegJHU from CRAN with:
install.packages("ggsegJHU")
And the development version from GitHub with:
# install.packages("devtools") devtools::install_github("LCBC-UiO/ggsegJHU")
This is a basic example which shows you how to solve a common problem:
library(ggsegJHU)
library(ggseg) ggseg(atlas = jhu, mapping = aes(fill = region)) + scale_fill_brain("jhu", package = "ggsegJHU") + theme(legend.position = "bottom", legend.text = element_text(size = 7)) + guides(fill = guide_legend(ncol = 2))
library(ggseg3d) ggseg3d(atlas = jhu_3d) %>% add_glassbrain("left") %>% pan_camera("right lateral")
library(ggseg3d) p <- ggseg3d(atlas = jhu_3d) %>% add_glassbrain("left") %>% pan_camera("right lateral") %>% plotly::add_annotations( text="Screen capture", legendtitle=TRUE, showarrow=FALSE, font = list(color = "#000000b4", family = 'sans serif', size = 50)) plotly::orca(p, "man/figures/README-3d-plot.png")
knitr::include_graphics("man/figures/README-3d-plot.png")
Please note that the 'ggsegJHU' project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.