ar_eogreg: Remove EOG using regression

View source: R/artefact_rejection.R

ar_eogregR Documentation

Remove EOG using regression

Description

Calculates and removes the contribution of eye movements to the EEG signal using least-squares regression. Specifically, it generate regression weights based on EOG channels that are used to estimate how much activity eye movements are responsible for across all channels.

Usage

ar_eogreg(data, heog, veog, bipolarize = TRUE)

## S3 method for class 'eeg_data'
ar_eogreg(data, heog, veog, bipolarize = TRUE)

## S3 method for class 'eeg_epochs'
ar_eogreg(data, heog, veog, bipolarize = TRUE)

Arguments

data

Data to regress - eeg_data or eeg_epochs

heog

Horizontal EOG channel labels

veog

Vertical EOG channel labels

bipolarize

Bipolarize the EOG channels. Only works when four channels are supplied (2 HEOG and 2 VEOG).

Value

An eeg_data or eeg_epochs object with corrections applied.

Author(s)

Matt Craddock, matt@mattcraddock.com


neuroconductor/eegUtils documentation built on Feb. 3, 2023, 5:33 p.m.