ar_trialfoc: Detect high trial focality of ICA components

View source: R/ar_for_ica.R

ar_trialfocR Documentation

Detect high trial focality of ICA components

Description

Detect components that load heavily on a small number of trials. Looks for components that have one particular trial that has a particularly high z-score.

Usage

ar_trialfoc(data, plot = TRUE, threshold = NULL, verbose = TRUE)

Arguments

data

eeg_ICA object

plot

Produce plot showing max z-scores and threshold for all ICA components.

threshold

Specify a threshold (z-score) for high focality. NULL estimates the threshold automatically.

verbose

Print informative messages.

Value

A character vector of component names that break the threshold.

Author(s)

Matt Craddock matt@mattcraddock.com

References

Chaumon, M., Bishop, D.V., Busch, N.A. (2015). A practical guide to the selection of independent components of the electroencephalogram for artifact correction. J Neurosci Methods. Jul 30;250:47-63. doi: 10.1016/j.jneumeth.2015.02.025

Examples

demo_sobi <- run_ICA(demo_epochs, pca = 10)
ar_trialfoc(demo_sobi)

neuroconductor/eegUtils documentation built on Feb. 3, 2023, 5:33 p.m.