context("Automatic Dimensionality Selection")
# Input Tests
test_that("Out-of-range, or non-integer 'n' value.", {
# Define standard deviation vector.
sdev = c(100,99,98,50,49,48)
leneig = length(sdev)
# Less than 1, or greater than the number of vertices.
n <- 0
expect_error(gs.dim.select(sdev, n=n), "Input object 'n' must be in the appropriate interval.")
n <- -10
expect_error(gs.dim.select(sdev, n=n), "Input object 'n' must be in the appropriate interval.")
n <- leneig + 1
expect_error(gs.dim.select(sdev, n=n), "Input object 'n' must be in the appropriate interval.")
# Not a single number.
n <- "string"
expect_error(gs.dim.select(sdev, n=n), "Input object 'n' is not a numeric value.")
n <- sdev
expect_error(gs.dim.select(sdev, n=n), "Input object 'n' is not a numeric value.")
n <- matrix(c(1, 0, 0, 1), nrow = 2)
expect_error(gs.dim.select(sdev, n=n), "Input object 'n' is not a numeric value.")
})
test_that("Incorrect input standard deviation vector 'dat'.", {
# Not a graph or a matrix of any kind.
sdev <- "string"
n <- 1
expect_error(gs.dim.select(sdev, n=n), "Input object 'X' is not a graph, a matrix/complex matrix or 2-D array, array, nor a one-dimensional numeric array.")
# Matrix, but not a valid sdev vector.
sdev <- matrix(c('a', 2, 3, 4, 5, 6))
n <- 1
expect_error(gs.dim.select(sdev, n=n), "Your input 'X' is a 1-D vector, array, or matrix, but has invalid entries and cannot be cast to numeric.")
})
# General Functionality.
test_that("End-to-end testing.", {
# Run two seperate Wilcoxon tests on a strong 2-block SBM and a simple random graph.
num_sims <- 10
dim <- 2
test_vector <- rep(dim, num_sims)
sbm_dimselected <- c()
er_dimselected <- c()
for (s in 1:num_sims) {
## Simulate core-periphery SBM, and simple ER graph.
n <- 40
num_class1 <- n/2
# SBM Params
num_class2 <- n - num_class1
assignments <- c(rep(1, num_class1), rep(2, num_class2))
B_sbm <- matrix(c(0.8, 0.2,
0.2, 0.8), nrow = 2)
p <- 0.5
B_er <- matrix(c(p, p,
p, p), nrow = 2)
# 2-block simulation.
set.seed(123)
g_sbm <- igraph::sample_sbm(n, pref.matrix=B_sbm, block.sizes=c(num_class1, num_class2))
# Simple random graph.
g_er <- igraph::sample_sbm(n, pref.matrix=B_er, block.sizes=c(num_class1, num_class2))
## Embed both with ASE; get singular values from adjacency matrix;
## select dimenstion with dimselect.
A_sbm <- igraph::as_adj(g_sbm)
sigma_sbm <- rARPACK::svds(A_sbm,10)$d
dim_sbm <- gs.dim.select(sigma_sbm)$elbow[1]
sbm_dimselected <- append(sbm_dimselected, dim_sbm)
A_er <- igraph::as_adj(g_er)
sigma_er <- rARPACK::svds(A_er,10)$d
dim_er <- gs.dim.select(sigma_er)$elbow[1]
er_dimselected <- append(er_dimselected, dim_er)
}
p_val = wilcox.test(er_dimselected,sbm_dimselected, alt = 'less', exact = FALSE)$p.value
## We expect 2-Block SBM to have a higher p-value.
expect_true(p_val < 0.05 )
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.