context("Laplacian Spectral Embedding")
test_that("Too low, too high, or non-integer 'dim' value.", {
# Define simple 2-vertex graph.
n <- 2
A <- matrix(c(0, 1, 1, 0), nrow = n)
g <- igraph::graph_from_adjacency_matrix(A)
# Less than 1, or greater than the number of vertices.
dim <- 0
expect_error(gs.embed.lse(g, dim), "The number of embedding dimensions 'k' < 1.")
dim <- -10
expect_error(gs.embed.lse(g, dim), "The number of embedding dimensions 'k' < 1.")
dim <- n + 1
expect_error(gs.embed.lse(g, dim), "The number of embedding dimensions 'k' is greater than number of vertices.")
# Not a single number.
dim <- "string"
expect_error(gs.embed.lse(g, dim), "The number of embedding dimensions 'k' is not a number.")
dim <- g
expect_error(gs.embed.lse(g, dim), "The number of embedding dimensions 'k' has length > 1.")
dim <- matrix(c(1, 0, 0, 1), nrow = 2)
expect_error(gs.embed.lse(g, dim), "The number of embedding dimensions 'k' has length > 1.")
dim <- c(5, 6, 7)
expect_error(gs.embed.lse(g, dim), "The number of embedding dimensions 'k' has length > 1.")
})
test_that("Incorrect input graph 'g'.", {
# Not a graph or a matrix of any kind.
g <- "string"
dim <- 1
expect_error(gs.embed.lse(g, dim), "Input object 'g' is not an igraph object.")
# 'g' contains multiple graphs.
A1 <- matrix(c(1, 0, 0, 1), nrow = 2)
A2 <- matrix(c(1, 0, 0, 1), nrow = 2)
A <- c(A1, A2)
dim <- 1
expect_error(gs.embed.lse(A, dim), "Input object 'g' is not an igraph object.")
# Matrix, but not a valid adjacency (square) matrix.
A <- matrix(c(1, 2, 3, 4, 5, 6), nrow = 2)
dim <- 1
expect_error(gs.embed.lse(A, dim), "Non-square matrix, Non-square matrix")
})
# General Functionality.
test_that("End-to-end testing.", {
# Number of simulations. Count how many times latent block assignments are recovered
# via kmeans clustering of ASE from a core-periphery 2-SBM and simple random graph.
num_sims <- 10
cp_is_better <- 0
er_is_better <- 0
set.seed(123)
for (s in 1:num_sims) {
## Simulate core-periphery SBM, and simple ER graph.
n <- 100
num_class1 <- n/2
# SBM Params
num_class2 <- n - num_class1
assignments <- c(rep(1, num_class1), rep(2, num_class2))
B_cp <- matrix(c(0.8, 0.3,
0.3, 0.3), nrow = 2)
p <- 0.5
B_er <- matrix(c(p, p,
p, p), nrow = 2)
# Core-periphery simulation.
g_cp <- igraph::sample_sbm(n, pref.matrix=B_cp, block.sizes=c(num_class1, num_class2))
# Simple random graph.
g_er <- igraph::sample_sbm(n, pref.matrix=B_er, block.sizes=c(num_class1, num_class2))
## Embed both with ASE.
dim <- 2
X_cp <- gs.embed.lse(g_cp, dim)
X_er <- gs.embed.lse(g_er, dim)
## Perform k-means clustering on embedded data.
kmeans_cp <- kmeans(X_cp$X, 2)$cluster
kmeans_er <- kmeans(X_er$X, 2)$cluster
## Check ARI of both clustering assignments.
ari_cp <- mclust::adjustedRandIndex(kmeans_cp, assignments)
ari_er <- mclust::adjustedRandIndex(kmeans_er, assignments)
if (ari_cp > ari_er) { cp_is_better <- cp_is_better + 1 }
else { er_is_better <- er_is_better + 1 }
}
## We expect 2-Block SBM to have a higher value.
expect_true( cp_is_better > er_is_better)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.