fmt.model.names <- cbind(
c("aov","ANOVA",""),
c("arima","ARIMA",""),
c("Arima","ARIMA",""),
c("blogit","bivariate","logistic"),
c("bprobit","bivariate","probit"),
c("betareg", "beta",""),
c("chopit","compound hierarchical","ordered probit"),
c("clm","cumulative","link"),
c("censReg", "censored", "regression"),
c("cloglog.net","network compl.","log log"),
c("clogit","conditional","logistic"),
c("coxph","Cox","prop. hazards"),
c("dynlm","dynamic","linear"),
c("lagsarlm","spatial","autoregressive"),
c("errorsarlm","spatial","error"),
c("ei.dynamic","Quinn dynamic","ecological inference"),
c("ei.hier","$2 \times 2$ hierarchical","ecological inference"),
c("ei.RxC","hierarchical multinominal-Dirichlet","ecological inference"),
c("exp","exponential",""),
c("ergm","exponential family","random graph"),
c("factor.bayes","Bayesian","factor analysis"),
c("factor.mix","mixed data","factor analysis"),
c("factor.ord","ordinal data","factor analysis"),
c("fGARCH","GARCH",""), c("gamma","gamma",""),
c("gamma.gee","gamma generalized","estimating equation"),
c("gamma.mixed","mixed effects","gamma"),
c("gamma.net","network","gamma"),
c("gamma.survey","survey-weighted","gamma"),
c("glmrob","robust","GLM"),
c("gls","generalized","least squares"),
c("gmm","GMM",""),
c("rem.dyad", "relational", "event (dyadic)"),
c("irt1d","IRT","(1-dim.)"),
c("irtkd","IRT","(k-dim.)"),
c("logit","logistic",""),
c("logit.bayes","Bayesian","logistic"),
c("logit.gam","GAM","(logistic)"),
c("logit.gee","logistic generalized","estimating equation"),
c("logit.mixed","mixed effects","logistic"),
c("logit.net","network","logistic"),
c("logit.survey","survey-weighted","logistic"),
c("lognorm","log-normal",""),
c("lmer","linear","mixed-effects"), c("glmer","generalized linear","mixed-effects"), c("nlmer","non-linear","mixed-effects"),
c("ls","OLS",""), c("ls.mixed","mixed effect","linear"), c("lme","linear","mixed effects"), c("lmrob","MM-type","linear"),
c("ls.net","network","least squares"), c("mlogit","multinomial","logistic"), c("mnlogit","multinomial","logit"),
c("mlogit.bayes","Bayesian","multinomial logistic"),
c("negbin","negative","binomial"), c("normal","normal",""),
c("multinom","multinomial log-linear","(neural networks)"),
c("nlme","non-linear","mixed effects"),
c("normal.bayes","Bayesian","normal"),
c("normal.gam","GAM","(continuous)"),
c("normal.gee","normal generalized","estimating equation"),
c("normal.net","network","normal"),
c("normal.survey","survey-weighted","normal"),
c("ologit","ordered","logistic"),
c("oprobit","ordered","probit"),
c("oprobit.bayes","Bayesian","ordered probit"),
c("pmg","mean","groups"),
c("poisson","Poisson",""),
c("poisson.bayes","Bayesian","Poisson"),
c("poisson.gam","GAM","(count)"),
c("poisson.mixed","mixed effects","Poisson"),
c("poisson.survey","survey-weighted","Poisson"),
c("poisson.gee","Poisson generalized","estimation equation"),
c("probit","probit",""),
c("probit.bayes","Bayesian","probit"),
c("probit.gam","GAM","(probit)"),
c("probit.gee","probit generalized","estimating equation"),
c("probit.mixed","mixed effects","probit"),
c("probit.net","network","probit"),
c("probit.survey","survey-weighted","probit"),
c("relogit","rare events","logistic"),
c("rq","quantile","regression"),
c("rlm","robust","linear"),
c("sur","SUR",""),
c("threesls","3SLS",""),
c("tobit","Tobit",""),
c("tobit(AER)","Tobit",""),
c("tobit.bayes","Bayesian","Tobit"),
c("twosls","2SLS",""),
c("weibull","Weibull",""),
c("zeroinfl","zero-inflated","count data"),
c("hurdle","hurdle",""),
c("plm","panel","linear"),
c("pgmm","panel","GMM"),
c("ivreg","instrumental","variable"),
c("coxreg","Cox",""),
c("mlreg","ML","prop. hazards"),
c("weibreg","Weibull",""),
c("aftreg","accelerated"," failure time"),
c("phreg","parametric","prop. hazards"),
c("bj","Buckley-James",""),
c("cph","Cox",""),
c("Gls","generalized","least squares"),
c("lrm","logistic",""),
c("ols","OLS",""),
c("psm","parametric","survival"),
c("Rq","quantile","regression"),
c("hetglm","heteroskedastic","GLM"),
c("coeftest","coefficient","test"),
c("heckit","Heckman","selection"),
c("selection","selection",""),
c("probit.ss","probit",""),
c("binaryChoice","binary","choice"),
c("brglm","GLM","(bias reduction)"),
c("maBina","binary model","(marginal effect)"),
c("mclogit","mixed","conditional logit")
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.