Description Usage Arguments Value Examples
View source: R/estimateBPMatrix.R
Estimate parameters of beta-Poisson models for a data matrix
1 2 3 |
dataMat |
Data matrix that needs to be modelled |
para.num |
Mode of beta-Poisson model: 3, 4 (default) or 5 parameters |
tbreak.num |
Number of breaks for binning |
fout |
A *.RData file name to export results |
break.thres |
A parameter setting of |
estIntPar |
An option to allow estimating initial parameters for the model from only expressed values |
extreme.quant |
A quantile probability to remove extrem values (outliers) higher than the quantile. If extreme.quant=NULL, no elimination of outliers is done |
useExt |
A parameter setting of |
min.exp |
A threshold for minimum expressed values. If a expression is less than min.exp, it is set to be zero |
useParallel |
An option to allow using parallel computing |
A list of optimal models corresponding to the rows of the matrix. Each model consists of optimal parameters, X2 test results (X2 and PVAL), etc..
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | set.seed(2015)
#create random data matrix from a beta-poisson model
N=10
alp=sample(100,N,replace=TRUE)*0.1;
bet=sample(100,N,replace=TRUE)*0.1;
lam1=sample(100,N,replace=TRUE)*10;
lam2=sample(100,N,replace=TRUE)*0.01;
n=100
bp.mat=NULL
for (i in 1:N)
bp.mat=rbind(bp.mat,rBP(n,alp=alp[i],bet=bet[i],lam1=lam1[i],lam2=lam2[i]))
#Estimate parameters from the data set
mat.res=estimateBPMatrix(bp.mat,para.num=4,fout=NULL,estIntPar=FALSE,useParallel=FALSE)
#In this function, user can also set estIntPar=TRUE to have better estimated beta-Poisson
#models for the generalized linear model. However, a longer computational time is required.
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.