Description Usage Arguments Value Examples
View source: R/getBPMCnullmatrix.R
Generate Monte-Carlo null distributions for a list of beta-Poisson models
1 2 3 | getBPMCnullmatrix(bp.model.list, fout = NULL, sim.num = 1000,
useParallel = FALSE, cpu.num = 16, ran.num = 1e+05, E.esp = 0,
tbreak.num = 10, useDebug = FALSE)
|
bp.model.list |
List of beta-Poisson models that are results from |
fout |
A *.RData file name to export results |
sim.num |
A number of simulation of each model |
useParallel |
An option for using parallel (=TRUE) |
cpu.num |
The number of cpus if using parallel |
ran.num |
The number of data points generated from the beta-Poisson model to approximate the theoretical model |
E.esp |
An small value added to expected value when computing X2, E.esp=0.0 by default |
tbreak.num |
Number of breaks for binning |
useDebug |
A parameter setting of |
A list of Monte-Carlo null distributions from the input models (MCdis.list) and setting values of parameters sim.num, ran.num and E.esp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | set.seed(2015)
#create random data matrix from a beta-poisson model
N=10
alp=sample(100,N,replace=TRUE)*0.1;
bet=sample(100,N,replace=TRUE)*0.1;
lam1=sample(100,N,replace=TRUE)*10;
lam2=sample(100,N,replace=TRUE)*0.01;
n=100
bp.mat=NULL
for (i in 1:N)
bp.mat=rbind(bp.mat,rBP(n,alp=alp[i],bet=bet[i],lam1=lam1[i],lam2=lam2[i]))
#Estimate parameters from the data set
mat.res=estimateBPMatrix(bp.mat,para.num=4,fout=NULL,estIntPar=FALSE,useParallel=FALSE)
MCnullmatrix.res=getBPMCnullmatrix(bp.model.list=mat.res$bp.model.list,fout=NULL,
sim.num=100,useParallel=FALSE)
#Get Monte-Carlo p-values
MC.pval=getMCpval(bp.model.list=mat.res$bp.model.list,
MCdis.list=MCnullmatrix.res$MCdis.list)
MC.pval
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.