skip_if_not_installed("MatchIt")
test_that("URI, binary treatment, MatchIt", {
skip_if_not_installed("estimatr")
data("lalonde")
M <- MatchIt::matchit(treat ~ age + education + race + married + re74 + re75,
data = lalonde)
md <- MatchIt::match.data(M, data = lalonde)
expect_no_condition(
l <- lmw(re78 ~ treat + age + education + race + married + re74 + re75,
data = lalonde, method = "URI", treat = "treat",
base.weights = M$weights)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l, cluster = ~M$subclass)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
### estimatr::lm_robust() output
f <- estimatr::lm_robust(re78 ~ treat + age + education + race + married + re74 + re75,
data = md, cluster = subclass, weights = weights,
se_type = "stata")
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
})
test_that("MRI, binary treatment, ATT, MatchIt", {
skip_if_not_installed("marginaleffects")
data("lalonde")
M <- MatchIt::matchit(treat ~ age + education + race + married + re74 + re75,
data = lalonde)
md <- MatchIt::match.data(M, data = lalonde)
expect_no_condition(
l <- lmw(re78 ~ treat + age + education + race + married + re74 + re75,
data = lalonde, method = "MRI", treat = "treat",
estimand = "ATT",
base.weights = M$weights)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l, cluster = ~M$subclass)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
### avg_comparisons() output
f <- lm(re78 ~ treat * (age + education + race + married + re74 + re75),
data = md, weights = weights)
ac <- marginaleffects::avg_comparisons(f, variables = "treat",
vcov = ~subclass,
newdata = subset(md, treat == 1))
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "t value")],
unlist(ac[1, c("estimate", "std.error", "statistic")]))
})
test_that("URI, binary treatment, fixed effects, MatchIt", {
skip_if_not_installed("estimatr")
data("lalonde")
M <- MatchIt::matchit(treat ~ age + education + race + married + re74 + re75,
data = lalonde)
md <- MatchIt::match.data(M, data = lalonde)
expect_no_condition(
l <- lmw(re78 ~ treat + age + education + married + re74 + re75,
data = lalonde, method = "URI", treat = "treat",
fixef = ~race,
base.weights = M$weights)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l, cluster = ~M$subclass)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
### estimatr::lm_robust() output
f <- estimatr::lm_robust(re78 ~ treat + age + education + married + re74 + re75,
data = md, fixed_effects = ~race, weights = weights,
se_type = "stata", cluster = subclass)
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
})
test_that("MRI, binary treatment, ATT, fixed effects, MatchIt", {
skip_if_not_installed("marginaleffects")
data("lalonde")
M <- MatchIt::matchit(treat ~ age + education + race + married + re74 + re75,
data = lalonde)
md <- MatchIt::match.data(M, data = lalonde)
expect_no_condition(
l <- lmw(re78 ~ treat + age + education + married + re74 + re75,
data = lalonde, method = "MRI", treat = "treat",
estimand = "ATT",
fixef = ~race,
base.weights = M$weights)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l, cluster = M$subclass)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
### URI + covariate version
l2 <- lmw(re78 ~ treat * (age + education + married + re74 + re75) + race,
data = lalonde, method = "URI", treat = "treat",
estimand = "ATT",
base.weights = M$weights)
est2 <- weighted_mean_diff(lalonde$re78, lalonde$treat, l2$weights)
expect_equal_est(est, est2)
### avg_comparisons() output
f <- lm(re78 ~ treat * (age + education + married + re74 + re75) + race,
data = md, weights = weights)
ac <- marginaleffects::avg_comparisons(f, variables = "treat",
vcov = ~subclass,
newdata = subset(md, treat == 1))
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "t value")],
unlist(ac[1, c("estimate", "std.error", "statistic")]))
})
test_that("URI, binary treatment, 2SLS, MatchIt", {
skip_if_not_installed("estimatr")
data("lalonde")
M <- MatchIt::matchit(treat ~ age + education + race + married + re74 + re75,
data = lalonde)
md <- MatchIt::match.data(M, data = lalonde)
expect_no_condition(
l <- lmw_iv(re78 ~ treat + age + education + race + married + re74 + re75,
data = lalonde, method = "URI", treat = "treat",
iv = ~Ins, base.weights = M$weights)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l, cluster = M$subclass)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
### estimatr::lm_robust() output
f <- estimatr::iv_robust(re78 ~ treat + age + education + race + married + re74 + re75 |
Ins + age + education + race + married + re74 + re75,
data = md, se_type = "stata", cluster = subclass,
weights = weights)
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
})
test_that("URI, binary treatment, 2SLS, fixed effects, CR SEs, MatchIt", {
skip_if_not_installed("ivreg")
skip_if_not_installed("lmtest")
data("lalonde")
M <- MatchIt::matchit(treat ~ age + education + race + married + re74 + re75,
data = lalonde)
md <- MatchIt::match.data(M, data = lalonde)
expect_no_condition(
l <- lmw_iv(re78 ~ treat + age + education + married + re74 + re75,
data = lalonde, method = "URI", treat = "treat",
iv = ~Ins, fixef = ~race,
base.weights = M$weights)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l, cluster = ~race + M$subclass)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
### ivreg::ivreg() output; need for 2-way CR SEs
f <- ivreg::ivreg(re78 ~ treat + age + education + married + race + re74 + re75 |
Ins + age + education + married + race + re74 + re75,
data = md, weights = weights)
ss <- lmtest::coeftest(f, vcov. = sandwich::vcovCL, cluster = ~subclass + race,
type = "HC1", df = 2)
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "t value", "Pr(>|t|)")],
ss["treat", c("Estimate", "Std. Error", "t value", "Pr(>|t|)")])
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.