skip_if_not_installed("WeightIt")
test_that("URI, binary treatment, WeightIt", {
skip_if_not_installed("estimatr")
data("lalonde")
suppressWarnings(
W_ate <- WeightIt::weightit(treat ~ age + education + race + married + re74 + re75,
data = lalonde, estimand = "ATE")
)
expect_no_condition(
l <- lmw(re78 ~ treat + age + education + race + married + re74 + re75,
data = lalonde, method = "URI", treat = "treat",
obj = W_ate)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
### estimatr::lm_robust() output
f <- estimatr::lm_robust(re78 ~ treat + age + education + race + married + re74 + re75,
data = lalonde, se_type = "HC3", weights = W_ate$weights)
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
})
test_that("MRI, binary treatment, ATE, WeightIt", {
skip_if_not_installed("marginaleffects")
data("lalonde")
suppressWarnings(
W_ate <- WeightIt::weightit(treat ~ age + education + race + married + re74 + re75,
data = lalonde, estimand = "ATE")
)
expect_no_condition(
l <- lmw(re78 ~ treat + age + education + race + married + re74 + re75,
data = lalonde, method = "MRI", treat = "treat", obj = W_ate)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
### avg_comparisons() output
f <- lm(re78 ~ treat * (age + education + race + married + re74 + re75),
data = lalonde, weights = W_ate$weights)
ac <- marginaleffects::avg_comparisons(f, variables = "treat",
vcov = "HC3")
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "t value")],
unlist(ac[1, c("estimate", "std.error", "statistic")]))
})
test_that("MRI, binary treatment, ATT, WeightIt", {
skip_if_not_installed("marginaleffects")
data("lalonde")
suppressWarnings(
W_att <- WeightIt::weightit(treat ~ age + education + race + married + re74 + re75,
data = lalonde, estimand = "ATT")
)
expect_no_condition(
l <- lmw(re78 ~ treat + age + education + race + married + re74 + re75,
data = lalonde, method = "MRI", treat = "treat",
obj = W_att)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
### avg_comparisons() output
f <- lm(re78 ~ treat * (age + education + race + married + re74 + re75),
data = lalonde, weights = W_att$weights)
ac <- marginaleffects::avg_comparisons(f, variables = "treat",
vcov = "HC3",
newdata = subset(lalonde, treat == 1))
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "t value")],
unlist(ac[1, c("estimate", "std.error", "statistic")]))
})
test_that("URI, binary treatment, fixed effects, WeightIt", {
skip_if_not_installed("estimatr")
data("lalonde")
suppressWarnings(
W_ate <- WeightIt::weightit(treat ~ age + education + race + married + re74 + re75,
data = lalonde, estimand = "ATE")
)
expect_no_condition(
l <- lmw(re78 ~ treat + age + education + married + re74 + re75,
data = lalonde, method = "URI", treat = "treat",
fixef = ~race, obj = W_ate)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
### estimatr::lm_robust() output
f <- estimatr::lm_robust(re78 ~ treat + age + education + married + re74 + re75,
data = lalonde, fixed_effects = ~race,
se_type = "HC3", weights = W_ate$weights)
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
})
test_that("MRI, binary treatment, ATE, fixed effects, WeightIt", {
skip_if_not_installed("marginaleffects")
data("lalonde")
suppressWarnings(
W_ate <- WeightIt::weightit(treat ~ age + education + race + married + re74 + re75,
data = lalonde, estimand = "ATE")
)
expect_no_condition(
l <- lmw(re78 ~ treat + age + education + married + re74 + re75,
data = lalonde, method = "MRI", treat = "treat",
fixef = ~race, obj = W_ate)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
### URI + covariate version
l2 <- lmw(re78 ~ treat * (age + education + married + re74 + re75) + race,
data = lalonde, method = "URI", treat = "treat",
obj = W_ate)
est2 <- weighted_mean_diff(lalonde$re78, lalonde$treat, l2$weights)
expect_equal_est(est, est2)
### avg_comparisons() output
f <- lm(re78 ~ treat * (age + education + married + re74 + re75) + race,
data = lalonde, weights = W_ate$weights)
ac <- marginaleffects::avg_comparisons(f, variables = "treat",
vcov = "HC3")
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "t value")],
unlist(ac[1, c("estimate", "std.error", "statistic")]))
})
test_that("URI, binary treatment, 2SLS, WeightIt", {
skip_if_not_installed("estimatr")
data("lalonde")
suppressWarnings(
W_ate <- WeightIt::weightit(treat ~ age + education + race + married + re74 + re75,
data = lalonde, estimand = "ATE")
)
expect_no_condition(
l <- lmw_iv(re78 ~ treat + age + education + race + married + re74 + re75,
data = lalonde, method = "URI", treat = "treat",
iv = ~Ins, obj = W_ate)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l, robust = "HC1")
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
### estimatr::lm_robust() output
f <- estimatr::iv_robust(re78 ~ treat + age + education + race + married + re74 + re75 |
Ins + age + education + race + married + re74 + re75,
data = lalonde, se_type = "HC1",
weights = W_ate$weights)
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
})
test_that("MRI, binary treatment, 2SLS, WeightIt", {
skip_if_not_installed("estimatr")
data("lalonde")
suppressWarnings(
W_ate <- WeightIt::weightit(treat ~ age + education + race + married + re74 + re75,
data = lalonde, estimand = "ATE")
)
expect_no_condition(
l <- lmw_iv(re78 ~ treat + age + education + married + re74 + re75,
data = lalonde, method = "MRI", treat = "treat",
iv = ~Ins, obj = W_ate)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l, robust = "HC1")
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
### estimatr::lm_robust() output
f <- estimatr::iv_robust(re78 ~ treat * (age + education + married + re74 + re75) |
Ins * (age + education + married + re74 + re75),
data = transform(lalonde,
age = age - mean(age),
education = education - mean(education),
married = married - mean(married),
re74 = re74 - mean(re74),
re75 = re75 - mean(re75)),
se_type = "HC1", weights = W_ate$weights)
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
})
test_that("URI, binary treatment, ATE, WeightIt, AIPW", {
skip_if_not_installed("PSweight")
data("lalonde")
suppressWarnings(
W_ate <- WeightIt::weightit(treat ~ age + education + race + married + re74 + re75,
data = lalonde, estimand = "ATE")
)
expect_no_condition(
l <- lmw(re78 ~ treat + age + education + race + married + re74 + re75,
data = lalonde, method = "URI", treat = "treat", obj = W_ate,
dr.method = "AIPW")
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
#PSweight AIPW with fixed PS and estimated outcome model
f <- lm(re78 ~ treat + age + education + race + married + re74 + re75,
data = lalonde)
y0 <- predict(f, newdata = transform(lalonde, treat = 0))
y1 <- predict(f, newdata = transform(lalonde, treat = 1))
P <- PSweight::PSweight(ps.estimate = W_ate$ps, zname = "treat", yname = "re78",
data = lalonde, weight = "IPW", augmentation = TRUE,
out.estimate = cbind(`0` = y0, `1` = y1))
expect_equal_est(s$coefficients[1, c("Estimate")],
summary(P)$estimates[1, c("Estimate")])
})
test_that("MRI, binary treatment, ATE, WeightIt, AIPW", {
skip_if_not_installed("PSweight")
data("lalonde")
suppressWarnings(
W_ate <- WeightIt::weightit(treat ~ age + education + race + married + re74 + re75,
data = lalonde, estimand = "ATE")
)
expect_no_condition(
l <- lmw(re78 ~ treat + age + education + race + married + re74 + re75,
data = lalonde, method = "MRI", treat = "treat", obj = W_ate,
dr.method = "AIPW")
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
#PSweight AIPW with fixed PS and estimated outcome model
P <- PSweight::PSweight(ps.estimate = W_ate$ps, zname = "treat", yname = "re78",
data = lalonde, weight = "IPW", augmentation = TRUE,
out.formula = re78 ~ age + education + race + married + re74 + re75)
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "95% CI L", "95% CI U", "z value", "Pr(>|z|)")],
summary(P)$estimates[1, c("Estimate", "Std.Error", "lwr", "upr", "z value", "Pr(>|z|)")])
})
test_that("MRI, binary treatment, ATT, WeightIt, AIPW", {
skip_if_not_installed("PSweight")
data("lalonde")
suppressWarnings(
W_att <- WeightIt::weightit(treat ~ age + education + race + married + re74 + re75,
data = lalonde, estimand = "ATT")
)
expect_no_condition(
l <- lmw(re78 ~ treat + age + education + race + married + re74 + re75,
data = lalonde, method = "MRI", treat = "treat", obj = W_att,
dr.method = "AIPW")
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
#PSweight AIPW with fixed PS and estimated outcome model
P <- PSweight::PSweight(ps.estimate = W_att$ps, zname = "treat", yname = "re78",
data = lalonde, weight = "treated", augmentation = TRUE,
out.formula = re78 ~ age + education + race + married + re74 + re75)
expect_equal_est(s$coefficients[1, c("Estimate")],
summary(P)$estimates[1, c("Estimate")])
#Note: SEs don't agree for ATT; PSweight's will be a little smaller. See lmw_est.lmw_aipw
#for details. PSweight's are more trustworthy because they use a more accurate formula
#that involves the propensity score (but it requires a propensity score!). Some
#evidence that analytical SEs perform poorly with incorrect outcome model anyway;
#Mao, LI, & Greene (2018, SMMR)
})
test_that("URI, multi-category treatment, WeightIt", {
skip_if_not_installed("estimatr")
skip_if_not_installed("mlogit")
data("lalonde")
suppressWarnings(
W_multi <- WeightIt::weightit(treat_multi ~ age + education + race + married + re74 + re75,
data = lalonde, estimand = "ATE")
)
expect_no_condition(
l <- lmw(re78 ~ treat_multi + age + education + race + married + re74 + re75,
data = lalonde, method = "URI", treat = "treat_multi",
contrast = c("3", "1"), obj = W_multi)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat_multi == "3", l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients["E[Y3-Y1]", "Estimate"],
est)
### estimatr::lm_robust() output
f <- estimatr::lm_robust(re78 ~ treat_multi + age + education + race + married + re74 + re75,
data = lalonde, se_type = "HC3", weights = W_multi$weights)
expect_equal_est(s$coefficients["E[Y2-Y1]", c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat_multi2", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
expect_equal_est(s$coefficients["E[Y3-Y1]", c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat_multi3", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
})
test_that("MRI, multi-category treatment, ATE, WeightIt", {
skip_if_not_installed("marginaleffects")
skip_if_not_installed("mlogit")
data("lalonde")
suppressWarnings(
W_multi <- WeightIt::weightit(treat_multi ~ age + education + race + married + re74 + re75,
data = lalonde, estimand = "ATE")
)
expect_no_condition(
l <- lmw(re78 ~ treat_multi + age + education + race + married + re74 + re75,
data = lalonde, method = "MRI", treat = "treat_multi",
obj = W_multi)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat_multi == "3", l$weights,
subset = lalonde$treat_multi %in% c("2", "3"))
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients["E[Y3-Y2]", "Estimate"],
est)
f <- lm(re78 ~ treat_multi * (age + education + race + married + re74 + re75),
data = lalonde, weights = W_multi$weights)
ac <- marginaleffects::avg_predictions(f, variables = "treat_multi",
vcov = "HC3",
hypothesis = "revpairwise")
expect_equal_est(s$coefficients[c("E[Y2-Y1]", "E[Y3-Y1]", "E[Y3-Y2]"), c("Estimate", "Std. Error", "t value")],
as.matrix(ac[1:3, c("estimate", "std.error", "statistic")]))
})
test_that("MRI, multi-category treatment, ATT, WeightIt", {
skip_if_not_installed("marginaleffects")
skip_if_not_installed("mlogit")
data("lalonde")
suppressWarnings(
W_multi_att <- WeightIt::weightit(treat_multi ~ age + education + race + married + re74 + re75,
data = lalonde, estimand = "ATT", focal = "1")
)
expect_no_condition(
l <- lmw(re78 ~ treat_multi + age + education + race + married + re74 + re75,
data = lalonde, method = "MRI", treat = "treat_multi",
obj = W_multi_att)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat_multi == "1", l$weights,
subset = lalonde$treat_multi %in% c("1", "3"))
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients["E[Y1-Y3]", "Estimate"],
est)
### avg_comparisons() output
f <- lm(re78 ~ treat_multi * (age + education + race + married + re74 + re75),
data = lalonde, weights = W_multi_att$weights)
ac <- marginaleffects::avg_predictions(f, variables = "treat_multi",
vcov = "HC3",
newdata = subset(lalonde, treat_multi == "1"),
hypothesis = "pairwise")
expect_equal_est(s$coefficients[c("E[Y1-Y2]", "E[Y1-Y3]", "E[Y2-Y3]"), c("Estimate", "Std. Error", "t value")],
as.matrix(ac[1:3, c("estimate", "std.error", "statistic")]))
})
test_that("URI, multi-category treatment, fixed effects, WeightIt", {
skip_if_not_installed("estimatr")
skip_if_not_installed("mlogit")
data("lalonde")
suppressWarnings(
W_multi <- WeightIt::weightit(treat_multi ~ age + education + race + married + re74 + re75,
data = lalonde, estimand = "ATE")
)
expect_no_condition(
l <- lmw(re78 ~ treat_multi + age + education + married + re74 + re75,
data = lalonde, method = "URI", treat = "treat_multi",
contrast = c("3", "1"), fixef = ~race, obj = W_multi)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat_multi == "3", l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients["E[Y3-Y1]", "Estimate"],
est)
### estimatr::lm_robust() output
f <- estimatr::lm_robust(re78 ~ treat_multi + age + education + married + re74 + re75,
data = lalonde, se_type = "HC3", fixed_effects = ~race,
weights = W_multi$weights)
expect_equal_est(s$coefficients["E[Y2-Y1]", c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat_multi2", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
expect_equal_est(s$coefficients["E[Y3-Y1]", c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat_multi3", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
})
test_that("URI, multi-category treatment, WeightIt, AIPW", {
skip_if_not_installed("PSweight")
skip_if_not_installed("mlogit")
data("lalonde")
suppressWarnings(
W_multi <- WeightIt::weightit(treat_multi ~ age + education + race + married + re74 + re75,
data = lalonde, estimand = "ATE", include.obj = TRUE)
)
expect_no_condition(
l <- lmw(re78 ~ treat_multi + age + education + race + married + re74 + re75,
data = lalonde, method = "URI", treat = "treat_multi",
contrast = c("3", "1"), obj = W_multi, dr.method = "AIPW")
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat_multi == "3", l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients["E[Y3-Y1]", "Estimate"],
est)
### estimatr::lm_robust() output
f <- lm(re78 ~ treat_multi + age + education + race + married + re74 + re75,
data = lalonde)
y1 <- predict(f, newdata = transform(lalonde, treat_multi = "1"))
y2 <- predict(f, newdata = transform(lalonde, treat_multi = "2"))
y3 <- predict(f, newdata = transform(lalonde, treat_multi = "3"))
P <- PSweight::PSweight(ps.estimate = W_multi$obj$probabilities,
zname = "treat_multi", yname = "re78",
data = lalonde, weight = "IPW", augmentation = TRUE,
out.estimate = cbind("1" = y1, "2" = y2, "3" = y3))
expect_equal_est(s$coefficients[, c("Estimate")],
summary(P)$estimates[, c("Estimate")])
})
test_that("MRI, multi-category treatment, ATE, WeightIt, AIPW", {
skip_if_not_installed("PSweight")
skip_if_not_installed("mlogit")
data("lalonde")
suppressWarnings(
W_multi <- WeightIt::weightit(treat_multi ~ age + education + race + married + re74 + re75,
data = lalonde, estimand = "ATE", include.obj = TRUE)
)
expect_no_condition(
l <- lmw(re78 ~ treat_multi + age + education + race + married + re74 + re75,
data = lalonde, method = "MRI", treat = "treat_multi",
obj = W_multi, dr.method = "AIPW")
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat_multi == "3", l$weights,
subset = lalonde$treat_multi %in% c("2", "3"))
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients["E[Y3-Y2]", "Estimate"],
est)
P <- PSweight::PSweight(ps.estimate = W_multi$obj$probabilities,
zname = "treat_multi", yname = "re78",
data = lalonde, weight = "IPW", augmentation = TRUE,
out.formula = re78 ~ age + education + race + married + re74 + re75)
expect_equal_est(s$coefficients[, c("Estimate", "Std. Error", "95% CI L", "95% CI U", "z value", "Pr(>|z|)")],
summary(P)$estimates[, c("Estimate", "Std.Error", "lwr", "upr", "z value", "Pr(>|z|)")])
})
test_that("MRI, multi-category treatment, ATT, WeightIt, AIPW", {
skip_if_not_installed("PSweight")
skip_if_not_installed("mlogit")
data("lalonde")
suppressWarnings(
W_multi <- WeightIt::weightit(treat_multi ~ age + education + race + married + re74 + re75,
data = lalonde, estimand = "ATT", include.obj = TRUE,
focal = "1")
)
expect_no_condition(
l <- lmw(re78 ~ treat_multi + age + education + race + married + re74 + re75,
data = lalonde, method = "MRI", treat = "treat_multi",
obj = W_multi, dr.method = "AIPW")
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat_multi == "3", l$weights,
subset = lalonde$treat_multi %in% c("2", "3"))
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients["E[Y3-Y2]", "Estimate"],
est)
P <- PSweight::PSweight(ps.estimate = W_multi$obj$probabilities,
zname = "treat_multi", yname = "re78",
data = lalonde, weight = "treated", trtgrp = "1", augmentation = TRUE,
out.formula = re78 ~ age + education + race + married + re74 + re75)
expect_equal_est(s$coefficients[, c("Estimate")],
summary(P)$estimates[, c("Estimate")])
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.