test_that("URI, binary treatment, sampling weights", {
skip_if_not_installed("estimatr")
data("lalonde"); lalonde$sw <- runif(nrow(lalonde))
expect_no_condition(
l <- lmw(re78 ~ treat + age + education + race + married + re74 + re75,
data = lalonde, method = "URI", treat = "treat",
s.weights = sw)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
### estimatr::lm_robust() output
f <- estimatr::lm_robust(re78 ~ treat + age + education + race + married + re74 + re75,
data = lalonde, se_type = "HC3", weights = sw)
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
})
test_that("MRI, binary treatment, ATE, sampling weights", {
skip_if_not_installed("marginaleffects")
skip_if_not_installed("estimatr")
data("lalonde"); lalonde$sw <- runif(nrow(lalonde))
expect_no_condition(
l <- lmw(re78 ~ treat + age + education + race + married + re74 + re75,
data = lalonde, method = "MRI", treat = "treat",
estimand = "ATE", s.weights = sw)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
### avg_comparisons() output
f <- lm(re78 ~ treat * (age + education + race + married + re74 + re75),
data = lalonde, weights = sw)
ac <- marginaleffects::avg_comparisons(f, variables = "treat",
vcov = "HC3", wts = "sw")
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "t value")],
unlist(ac[1, c("estimate", "std.error", "statistic")]))
### estimatr output
fl <- estimatr::lm_lin(re78 ~ treat,
~ age + education + race + married + re74 + re75,
data = lalonde, se_type = "HC3", weights = sw)
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(fl)$coefficients["treat", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
})
test_that("MRI, binary treatment, ATT, sampling weights", {
skip_if_not_installed("marginaleffects")
data("lalonde"); lalonde$sw <- runif(nrow(lalonde))
expect_no_condition(
l <- lmw(re78 ~ treat + age + education + race + married + re74 + re75,
data = lalonde, method = "MRI", treat = "treat",
estimand = "ATT",
s.weights = sw)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
### avg_comparisons() output
f <- lm(re78 ~ treat * (age + education + race + married + re74 + re75),
data = lalonde, weights = sw)
ac <- marginaleffects::avg_comparisons(f, variables = "treat",
vcov = "HC3",
newdata = subset(lalonde, treat == 1),
wts = "sw")
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "t value")],
unlist(ac[1, c("estimate", "std.error", "statistic")]))
})
test_that("URI, binary treatment, fixed effects, sampling weights", {
skip_if_not_installed("estimatr")
data("lalonde"); lalonde$sw <- runif(nrow(lalonde))
expect_no_condition(
l <- lmw(re78 ~ treat + age + education + married + re74 + re75,
data = lalonde, method = "URI", treat = "treat",
fixef = ~race,
s.weights = sw)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
### estimatr::lm_robust() output
f <- estimatr::lm_robust(re78 ~ treat + age + education + married + re74 + re75,
data = lalonde, fixed_effects = ~race,
se_type = "HC3", weights = sw)
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
})
test_that("MRI, binary treatment, ATE, fixed effects, sampling weights", {
skip_if_not_installed("marginaleffects")
data("lalonde"); lalonde$sw <- runif(nrow(lalonde))
expect_no_condition(
l <- lmw(re78 ~ treat + age + education + married + re74 + re75,
data = lalonde, method = "MRI", treat = "treat",
fixef = ~race,
s.weights = sw)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
### URI + covariate version
l2 <- lmw(re78 ~ treat * (age + education + married + re74 + re75) + race,
data = lalonde, method = "URI", treat = "treat",
s.weights = sw)
est2 <- weighted_mean_diff(lalonde$re78, lalonde$treat, l2$weights)
expect_equal_est(est, est2)
### avg_comparisons() output
f <- lm(re78 ~ treat * (age + education + married + re74 + re75) + race,
data = lalonde, weights = sw)
ac <- marginaleffects::avg_comparisons(f, variables = "treat",
vcov = "HC3", wts = "sw")
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "t value")],
unlist(ac[1, c("estimate", "std.error", "statistic")]))
})
test_that("URI, binary treatment, 2SLS, sampling weights", {
skip_if_not_installed("estimatr")
data("lalonde"); lalonde$sw <- runif(nrow(lalonde))
expect_no_condition(
l <- lmw_iv(re78 ~ treat + age + education + race + married + re74 + re75,
data = lalonde, method = "URI", treat = "treat",
iv = ~Ins,
s.weights = sw)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l, robust = "HC1")
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
### estimatr::lm_robust() output
f <- estimatr::iv_robust(re78 ~ treat + age + education + race + married + re74 + re75 |
Ins + age + education + race + married + re74 + re75,
data = lalonde, se_type = "HC1", weights = sw)
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
})
test_that("URI, binary treatment, 2SLS, fixed effects, CR SEs, sampling weights", {
skip_if_not_installed("estimatr")
data("lalonde"); lalonde$sw <- runif(nrow(lalonde))
expect_no_condition(
l <- lmw_iv(re78 ~ treat + age + education + married + re74 + re75,
data = lalonde, method = "URI", treat = "treat",
iv = ~Ins, fixef = ~race,
s.weights = sw)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l, robust = "HC1", cluster = ~race)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
### estimatr::lm_robust() output
f <- estimatr::iv_robust(re78 ~ treat + age + education + married + re74 + re75 |
Ins + age + education + married + re74 + re75,
data = lalonde, fixed_effects = ~race,
se_type = "stata", cluster = race,
weights = sw)
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
})
test_that("MRI, binary treatment, 2SLS, sampling weights", {
skip_if_not_installed("estimatr")
data("lalonde"); lalonde$sw <- runif(nrow(lalonde))
expect_no_condition(
l <- lmw_iv(re78 ~ treat + age + education + married + re74 + re75,
data = lalonde, method = "MRI", treat = "treat",
iv = ~Ins,
s.weights = sw)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat, l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l, robust = "HC1")
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients[1, "Estimate"],
est)
### estimatr::lm_robust() output
f <- estimatr::iv_robust(re78 ~ treat * (age + (education) + (married) + (re74) + (re75)) |
Ins * ((age) + (education) + (married) + (re74) + (re75)),
data = transform(lalonde,
age = age - weighted.mean(age, sw),
education = education - weighted.mean(education, sw),
married = married - weighted.mean(married, sw),
re74 = re74 - weighted.mean(re74, sw),
re75 = re75 - weighted.mean(re75, sw)),
se_type = "HC1", weights = sw)
expect_equal_est(s$coefficients[1, c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
})
test_that("URI, multi-category treatment, sampling weights", {
skip_if_not_installed("estimatr")
data("lalonde"); lalonde$sw <- runif(nrow(lalonde))
expect_no_condition(
l <- lmw(re78 ~ treat_multi + age + education + race + married + re74 + re75,
data = lalonde, method = "URI", treat = "treat_multi",
contrast = c("3", "1"),
s.weights = sw)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat_multi == "3", l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients["E[Y3-Y1]", "Estimate"],
est)
### estimatr::lm_robust() output
f <- estimatr::lm_robust(re78 ~ treat_multi + age + education + race + married + re74 + re75,
data = lalonde, se_type = "HC3", weights = sw)
expect_equal_est(s$coefficients["E[Y2-Y1]", c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat_multi2", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
expect_equal_est(s$coefficients["E[Y3-Y1]", c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat_multi3", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
})
test_that("MRI, multi-category treatment, ATE, sampling weights", {
skip_if_not_installed("estimatr")
data("lalonde"); lalonde$sw <- runif(nrow(lalonde))
expect_no_condition(
l <- lmw(re78 ~ treat_multi + age + education + race + married + re74 + re75,
data = lalonde, method = "MRI", treat = "treat_multi",
s.weights = sw)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat_multi == "3", l$weights,
subset = lalonde$treat_multi %in% c("2", "3"))
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients["E[Y3-Y2]", "Estimate"],
est)
### estimatr::lm_robust() output
f <- estimatr::lm_lin(re78 ~ treat_multi,
~ age + education + race + married + re74 + re75,
data = lalonde, se_type = "HC3", weights = sw)
expect_equal_est(s$coefficients["E[Y2-Y1]", c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat_multi2", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
expect_equal_est(s$coefficients["E[Y3-Y1]", c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat_multi3", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
})
test_that("MRI, multi-category treatment, ATT, sampling weights", {
skip_if_not_installed("marginaleffects")
data("lalonde"); lalonde$sw <- runif(nrow(lalonde))
expect_no_condition(
l <- lmw(re78 ~ treat_multi + age + education + race + married + re74 + re75,
data = lalonde, method = "MRI", treat = "treat_multi",
estimand = "ATT", focal = "1",
s.weights = sw)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat_multi == "1", l$weights,
subset = lalonde$treat_multi %in% c("1", "3"))
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients["E[Y1-Y3]", "Estimate"],
est)
### avg_comparisons() output
f <- lm(re78 ~ treat_multi * (age + education + race + married + re74 + re75),
data = lalonde, weights = sw)
ac <- marginaleffects::avg_predictions(f, variables = "treat_multi",
vcov = "HC3",
newdata = subset(lalonde, treat_multi == "1"),
wts = "sw",
hypothesis = "pairwise")
expect_equal_est(s$coefficients[c("E[Y1-Y2]", "E[Y1-Y3]", "E[Y2-Y3]"), c("Estimate", "Std. Error", "t value")],
as.matrix(ac[1:3, c("estimate", "std.error", "statistic")]))
})
test_that("URI, multi-category treatment, fixed effects, sampling weights", {
skip_if_not_installed("estimatr")
data("lalonde"); lalonde$sw <- runif(nrow(lalonde))
expect_no_condition(
l <- lmw(re78 ~ treat_multi + age + education + married + re74 + re75,
data = lalonde, method = "URI", treat = "treat_multi",
contrast = c("3", "1"), fixef = ~race,
s.weights = sw)
)
### Weighted difference in means
est <- weighted_mean_diff(lalonde$re78, lalonde$treat_multi == "3", l$weights)
### lmw_est() output
expect_no_condition(
e <- lmw_est(l)
)
expect_no_condition(
s <- summary(e)
)
expect_equal_est(s$coefficients["E[Y3-Y1]", "Estimate"],
est)
### estimatr::lm_robust() output
f <- estimatr::lm_robust(re78 ~ treat_multi + age + education + married + re74 + re75,
data = lalonde, se_type = "HC3", fixed_effects = ~race,
weights = sw)
expect_equal_est(s$coefficients["E[Y2-Y1]", c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat_multi2", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
expect_equal_est(s$coefficients["E[Y3-Y1]", c("Estimate", "Std. Error", "95% CI L", "95% CI U", "t value", "Pr(>|t|)")],
summary(f)$coefficients["treat_multi3", c("Estimate", "Std. Error", "CI Lower", "CI Upper", "t value", "Pr(>|t|)")])
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.