Description Usage Arguments Details Value Examples
J = \frac{n_{11}}{n_{11} + n_{10} + n_{01}}
.
In the special case that the Jaccard coefficient results in 0/0, we define J = 0. For instance, this case can occur when both clusterings consist of all singleton clusters.
1 | jaccardIndex(labels1, labels2)
|
labels1 |
a vector of |
labels2 |
a vector of |
To compute the contingency table, we use the comembership_table
function.
the Jaccard coefficient for the two sets of cluster labels (See' Details.)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | ## Not run:
# We generate K = 3 labels for each of n = 10 observations and compute the
# Jaccard similarity coefficient between the two clusterings.
set.seed(42)
K <- 3
n <- 10
labels1 <- sample.int(K, n, replace = TRUE)
labels2 <- sample.int(K, n, replace = TRUE)
jaccardIndex(labels1, labels2)
# Here, we cluster the \code{\link{iris}} data set with the K-means and
# hierarchical algorithms using the true number of clusters, K = 3.
# Then, we compute the Jaccard similarity coefficient between the two
# clusterings.
iris_kmeans <- kmeans(iris[, -5], centers = 3)$cluster
iris_hclust <- cutree(hclust(dist(iris[, -5])), k = 3)
jaccardIndex(iris_kmeans, iris_hclust)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.