#' @title Detect support and resistance point
#' @author Nguyen Ngoc Binh \email{nguyenngocbinhneu@@gmail.com}
#' @export detect_support_resistance
#' @param timeSeries timeSeries a univariate numeric vector of (evenly-sampled) price observation. If you use OHLC prices, you may separately fit support and resistance levels to, respectively, lows and highs.
#' @param tolerance Virtually no support or resistance level is perfectly horizontal. Thus we allow some tolerance (in percentage of max(timeSeries)-min(timeSeries)) for the difference of the first and the last extreme. The default value of 0.01 maybe too restrictive, so you may try 0.02 and 0.03
#' @param nChunks Number of chunks to split the timeSeries. At each chunk the maximum and minimum will be detected. If one does not split the time series in chunks but just detects the first largest extreme, second largest extreme, etc, these extreme values will likely be too close to each other. Generally, it is difficult to recommend the "optimal" number of chunks but 10 seems to be a good trade-off if the time series contains at least 200 observations.
#' @param nPoints How many extremes to consider by fitting support or resistance level. It is commonly believed that a level should fit to at least three extremes (and it is really hard to fit more than three, esp. if tolerance is low). Thus the default value of 3 is really not bad.
#' @param plotChartWhether to plot the results or not.
#' @examples
#' quantmod::getSymbols("AAPL",src='yahoo')
#' df <- data.frame(Date=index(AAPL),coredata(AAPL))
#' detect_support_resistance(df[,5])
#'
detect_support_resistance <-
function(timeSeries,
tolerance = 0.01,
nChunks = 10,
nPoints = 3,
plotChart = TRUE) {
#detect maximums and minimums
N = length(timeSeries)
stp = floor(N / nChunks)
minz = array(0.0, dim = nChunks)
whichMinz = array(0, dim = nChunks)
maxz = array(0.0, dim = nChunks)
whichMaxz = array(0, dim = nChunks)
for (j in 1:(nChunks - 1)){
#left and right elements of each chunk
lft = (j - 1) * stp + 1
rght = j * stp
whichMinz[j] = which.min(timeSeries[lft:rght]) + lft
minz[j] = min(timeSeries[lft:rght])
whichMaxz[j] = which.max(timeSeries[lft:rght]) + lft
maxz[j] = max(timeSeries[lft:rght])
}
#last chunk
lft = j * stp + 1 #left and right elements of each chunk
rght = N
whichMinz[nChunks] = which.min(timeSeries[lft:rght]) + lft
minz[nChunks] = min(timeSeries[lft:rght])
whichMaxz[nChunks] = which.max(timeSeries[lft:rght]) + lft
maxz[nChunks] = max(timeSeries[lft:rght])
result = list()
result[["minima"]] = NULL
result[["minimaAt"]] = NULL
result[["maxima"]] = NULL
result[["maximaAt"]] = NULL
span = tolerance * (max(maxz) - min(minz))
rang = order(minz)[1:nPoints]
if ((minz[rang[nPoints]] - minz[rang[1]]) <= span){
result[["minima"]] = minz[rang[1:nPoints]]
result[["minimaAt"]] = whichMinz[rang[1:nPoints]]
}
rang = order(maxz, decreasing = TRUE)[1:nPoints]
if ((maxz[rang[1]] - maxz[rang[nPoints]]) <= span){
result[["maxima"]] = maxz[rang[1:nPoints]]
result[["maximaAt"]] = whichMaxz[rang[1:nPoints]]
}
if (plotChart){
ts.plot(timeSeries)
points(whichMinz, minz, col = "red")
points(whichMaxz, maxz, col = "blue")
if (!is.null(result[["minima"]]) &&
!is.null(result[["minimaAt"]]))
abline(lm(result[["minima"]] ~ result[["minimaAt"]]))
if (!is.null(result[["maxima"]]) &&
!is.null(result[["maximaAt"]]))
abline(lm(result[["maxima"]] ~ result[["maximaAt"]]))
}
return(result)
}
x <- detectSupportResistance(df[,5], 0.1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.