knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(bmrarm) library(dplyr)
## Generate data sim_data <- bmrarm:::gen_ar_errors(N = 7, N_pat = 50, seed = 168, slope = T, unequal = T, ar_cov = T) ## Posterior sampling samps <- bmrarm(formula = cbind(y_ord, y2) ~ time, data = sim_data$data, ordinal_outcome = "y_ord", patient_var = "pat_idx", random_slope = T, time_var = "time", ar_cov = T, burn_in = 5, nsim = 10, thin = 1, seed = 168, sd_vec = c(0.14, 0.14, 0.35, 0.1, 0.23, 0.09))
## Marginal DIC (preferred choice) get_DIC(samps) ## Conditional DIC get_DIC(samps, marginal = FALSE)
bmrarm_summary <- summary(samps)
## Generate data with two ordinal and one continuous outcome sim_data <- bmrarm:::gen_single(N = 610, seed = 167) dat <- sim_data$data_no_miss %>% filter(row_number() <= 500) ## Posterior sampling samps <- bmrvarx(formula = cbind(y_ord, y_ord2, y3) ~ x1, data = dat, nsim = 150, burn_in = 100, seed = 1, ordinal_outcomes = c("y_ord", "y_ord2"), thin = 1, max_iter_rej = 500)
bmrvarx_summary <- summary(samps)
## Need new matrix of X values (exclude the intercept) x_pred <- matrix(sim_data$data_no_miss$x1[501:504], ncol = 1) ## Get predictions preds <- bmrarm:::get_preds_bmrvarx(samps, steps_ahead = 4, X = x_pred) ## Summarize predictions for the continous outcome summ <- apply(preds$cont_preds[,3, ], 2, function(x) { c(mean = mean(x), sd =sd(x), lower_CI = quantile(x, probs = 0.025), upper_CI = quantile(x, probs = 0.975)) }) %>% t() cbind(Step = 1:4, round(summ, 3)) ## Summarize predictions for the first ordinal outcome summ <- apply(preds$ord_preds[,1, ], 2, function(x) { c(Prob_1 = mean(x == 1), Prob_2 = mean(x == 2), Prob_3 = mean(x == 3), Prob_4 = mean(x == 4)) }) %>% t() cbind(Step = 1:4, round(summ, 3))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.