do_cormat | R Documentation |
Do a correlation matrix analysis as described by Horvath et al.
do_cormat( data_, cor.method = "pearson", diag0 = T, similarity.method = "none", adjacency.method = "none", alpha, theta, beta, distance.method = "euclidean", clustering.method = "complete", dataset, plot = T, input, output = "data_cormat" )
data_ |
list or tibble |
cor.method |
function to compute correlation coefficients |
diag0 |
set autocorrelation to 0 |
similarity.method |
similarity function ("absolute", "preserve", "none") |
adjacency.method |
adjacency function ("sigmoid", "power", "none") |
alpha |
alpha parameter for sigmoid function |
theta |
theta parameter for sigmoid function |
beta |
beta parameter for power function |
clustering.method |
method to cluster columns and rows ("complete", "average"); see ?hclust for options |
plot |
generate default plot with plot_cor_matrix |
input |
name of input data |
output |
name of output data |
distance.m |
ethod method to calculate distance; see ?dist for options |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.