predict_extreme_quantiles <- function(gpd_pars,
Q_x,
quantiles,
intermediate_quantile) {
## tibble numeric_vector numeric_vector(0, 1) numeric(0, 1) -> numeric_matrix
## produce matrix with estimated extremes quantiles. The value at (i, j) gives
## the estimated quantiles[j] for test sample i
res <- matrix(nrow = length(Q_x), ncol = length(quantiles))
for (j in seq_along(quantiles)) {
res[, j] <- q_GPD(
p = quantiles[j], p0 = intermediate_quantile, t_x0 = Q_x,
sigma = gpd_pars[[1]], xi = gpd_pars[[2]]
)
}
colnames(res) <- paste("quantile = ", quantiles)
return(res)
}
q_GPD <- function(p, p0, t_x0, sigma, xi) {
## numeric(0, 1) numeric(0, 1) numeric_vector numeric_vector
## numeric_vector -> numeric_vector
## estimates extreme quantiles of GPD
(((1 - p) / (1 - p0))^
{
-xi
} - 1) * (sigma / xi) + t_x0
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.