wasserman_normal_prds_sim: Normal PRDS simulation: Covariate is effect size under...

Description Usage Arguments Value Functions Examples

View source: R/simulations.R

Description

Normal PRDS simulation: Covariate is effect size under alternative, there are latent factors driving PRDS correlations among hypotheses

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
wasserman_normal_prds_sim(
  m,
  pi0,
  rho = 0,
  latent_factors = 1,
  xi_min = 0,
  xi_max = 2.5,
  seed = NULL
)

wasserman_normal_prds_sim_fun(
  m,
  pi0,
  rho = 0,
  latent_factors = 1,
  xi_min = 0,
  xi_max = 2.5
)

Arguments

m

Integer, total number of hypotheses

pi0

Numeric, proportion of null hypotheses

rho

Numeric, correlation between z-scores of hypotheses driven by same latent factor

latent_factors

Integer, number of latent factors driving the correlations

xi_min, xi_max

Numeric, covariates are drawn as uniform on xi_min, xi_max

seed

Integer, Random seed to be used for simulation (default: NULL, i.e. RNG state will be used as is)

Value

A data frame containing all information about the simulation experiment

Functions

Examples

1
sim_df <- wasserman_normal_prds_sim(20000,0.9, rho=0.1)

nignatiadis/ihwPaper documentation built on Jan. 18, 2021, 3:13 p.m.