###########################
# Mean Square Error (MSE) #
###########################
# nikita.gusarov@univ-grenoble-alpes.fr - April 2022
#' @title Mean Square Error (MSE)
#' @description Compute Mean Square Error (MSE).
#' The squared loss, in a sense, quantifies the error (or alternatively closeness) of the predicted label to the true label.
#' When specialized to the case of probabilistic classifiers, this then can be interpreted as a reliability measure.
#'
#' @param y_real Observed values (integers) to compare with
#' (in matrix format for multiclass classification).
#' @param y_predicted Predicte values (probabiblities by class).
#' @param rowsums Whether in case of multiple classes in dataframe the metrics should be summed across classes before calculating the mean.
#'
#' @return integer value of Mean Square Error (MSE)
#'
#' @export
#'
#'
mse <- function(y_real,
y_predicted,
rowsums = TRUE) {
# Class chekc
if (!any(class(y_real) == class(y_predicted))) {
stop("The classes of input objects do not match.")
}
if (is.vector(y_real) | (rowsums == FALSE)) {
# Compute MSE
mse <- mean(
(y_real - y_predicted)^2
)
} else
if (rowsums == TRUE) {
# Compute MSE
mse <- mean(
rowSums((y_real - y_predicted)^2)
)
}
# Output
return(mse)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.