Description Usage Arguments Details Value Author(s) References See Also Examples
View source: R/Beran_selector.R
beran.est
computes the location estimator in a location
shift model using Beran (1974)'s estimator. This function depends on
tuning parameters theta and M. We estimate the MSE of the estimators and
to choose the best (theta, M) from a set of options.
1 | beran.select(x, t, Mvec, inth, B)
|
x |
An array of length n; the dataset. |
t |
Optional, an array of real numbers, contains values of theta, parameter needed for estimating the Fourier coefficient. |
Mvec |
Optional, an array of integers, the number of basis functions to use. See details. |
inth |
A number; the initial estimator. The default is the median. |
B |
Optional, the number of bootstrap samples. The default is 100. |
To this end, we generate B Bootstrap samples and for each pair of (theta, M), we estimate the MSE by computing
\frac{∑_{i=1}^B(\hatθ_i(theta, M)-θ)^2}{B}
where θ_i(theta, M) is the estimator based on the i-th bootstrap sample and θ is the true theta.
We take theta to be in c(0.01, seq(0.10, 0.80, by=0.05)) and take M to be in (2, 4, 6, ..., 10).
A vector of foure numbers.
param:
A 2 columns, the number of rows is same as the
length of inth. Each row gives the optimal
(dn, tn) for the corresponding inth value.
estimte:
Gives the estimators of θ
using the optimal (dn, tn)'s.
Nilanjana Laha (maintainer), nlaha@hsph.harvard.edu.
Laha, N. Location estimation fr symmetric and log-concave densities. Submitted.
Stone, C. (1975). Adaptive maximum likelihood estimators of a location parameter, Ann. Statist., 3, 267-284.
1 2 | {}
@export
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.