beran.select: Tuning parameter selector for Beran (1974)'s location...

Description Usage Arguments Details Value Author(s) References See Also Examples

View source: R/Beran_selector.R

Description

beran.est computes the location estimator in a location shift model using Beran (1974)'s estimator. This function depends on tuning parameters theta and M. We estimate the MSE of the estimators and to choose the best (theta, M) from a set of options.

Usage

1
beran.select(x, t, Mvec, inth, B)

Arguments

x

An array of length n; the dataset.

t

Optional, an array of real numbers, contains values of theta, parameter needed for estimating the Fourier coefficient.

Mvec

Optional, an array of integers, the number of basis functions to use. See details.

inth

A number; the initial estimator. The default is the median.

B

Optional, the number of bootstrap samples. The default is 100.

Details

To this end, we generate B Bootstrap samples and for each pair of (theta, M), we estimate the MSE by computing

\frac{∑_{i=1}^B(\hatθ_i(theta, M)-θ)^2}{B}

where θ_i(theta, M) is the estimator based on the i-th bootstrap sample and θ is the true theta.

We take theta to be in c(0.01, seq(0.10, 0.80, by=0.05)) and take M to be in (2, 4, 6, ..., 10).

Value

A vector of foure numbers.

Author(s)

Nilanjana Laha (maintainer), nlaha@hsph.harvard.edu.

References

Laha, N. Location estimation fr symmetric and log-concave densities. Submitted.

Stone, C. (1975). Adaptive maximum likelihood estimators of a location parameter, Ann. Statist., 3, 267-284.

See Also

beran.est

Examples

1
2
{}
  @export

nilanjanalaha/log.location documentation built on Dec. 31, 2020, 12:07 a.m.