Description Usage Arguments Details Value Author(s) References See Also Examples
View source: R/stone.selector.tuning.R
giveth
computes the location estimator in a location
shift model using Stone (1975)'s estimator. This function depends on
tuning parameters dn and tn. We estimate the MSE of the estimators and
to choose the best (dn,tn) from a set of options.
1 | stone.select.ww(x, inth)
|
x |
An array of length n; the dataset. |
inth |
A vector of initial estimators |
D |
An array of real numbers, contains values of D, parameter needed for tuning dn. See details. |
t |
An array of real numbers, contains values of t, parameter needed for tuning tn. See details. |
To this end, we split the dataset in tan parts. Then we compute estimators \hat θ_i(dn,tn) for each (dn,tn) under consideration from the i-th part of the data, where i=1,...,10. We then estimate the MSE corresponding to each (dn, tn) by computing
\frac{∑_{i=1}^10(\hatθ_i(dn,tn)-\hatθ(dn, tn))^2}{10}.
We choose the (dn, tn) pairs which minimize the estimated MSE.
For asymptotic efficiency of the estimators, a) dn\to∞ and tn\to 0 b)
\frac{(dn)^2}{n^{1-ε}(tn)^6}=O(1)
for some ε>0. We take dn=Dn^{1/2}(tn)^3 and tn=t n^{-1/7}. We generate a set of (dn, tn) by varying D and t in the set (0.5, 1, 1.5, 2, 3, 4,....., 20).
A list is returned:
param:
A matrix with 2 columns, the number of rows is same as the
length of inth. Each row gives the optimal
(dn, tn) for the corresponding inth value.
estimte:
An array of same length as inth. Gives the estimators of θ
using the optimal (dn, tn)'s.
Nilanjana Laha (maintainer), nlaha@hsph.harvard.edu.
Laha, N. Location estimation fr symmetric and log-concave densities. Submitted.
Stone, C. (1975). Adaptive maximum likelihood estimators of a location parameter, Ann. Statist., 3, 267-284.
1 2 3 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.