knitr::opts_chunk$set(fig.align = "center", fig.width = 5, fig.height = 4, dpi = 100)
There are a variety of different plots to explore missing data available in the naniar package. This vignette simply showcases all of the visualisations. If you would like to know more about the philosophy of the naniar package, you should read vignette("naniar").
A key point to remember with the visualisation tools in naniar is that there is a way to get the data from the plot out from the visualisation.
One of the first plots that I recommend you start with when you are first exploring your missing data, is the vis_miss() plot, which is re-exported from visdat.
library(naniar) vis_miss(airquality)
This plot provides a specific visualiation of the amount of missing data, showing in black the location of missing values, and also providing information on the overall percentage of missing values overall (in the legend), and in each variable.
An upset plot from the UpSetR package can be used to visualise the patterns of missingness, or rather the combinations of missingness across cases. To see combinations of missingness and intersections of missingness amongst variables, use the gg_miss_upset function:
gg_miss_upset(airquality)
This tells us:
We can explore this with more complex data, such as riskfactors:
gg_miss_upset(riskfactors)
The default option of gg_miss_upset is taken from UpSetR::upset - which is
to use up to 5 sets and up to 40 interactions. Here, setting nsets = 5 means
to look at 5 variables and their combinations. The number of combinations
or rather intersections is controlled by nintersects. You could, for example
look at all of the number of missing variables using n_var_miss:
# how many missings? n_var_miss(riskfactors) gg_miss_upset(riskfactors, nsets = n_var_miss(riskfactors))
If there are 40 intersections, there will be up to 40 combinations of variables explored. The number of sets and intersections can be changed by passing arguments nsets = 10
to look at 10 sets of variables, and nintersects = 50 to look at 50
intersections.
gg_miss_upset(riskfactors, nsets = 10, nintersects = 50)
Setting nintersects to NA it will plot all sets and all intersections.
gg_miss_upset(riskfactors, nsets = 10, nintersects = NA)
There are a few different ways to explore different missing data mechanisms and relationships. One way incorporates the method of shifting missing values so that they can be visualised on the same axes as the regular values, and then colours the missing and not missing points. This is implemented with geom_miss_point().
geom_miss_pointlibrary(ggplot2) # using regular geom_point() ggplot(airquality, aes(x = Ozone, y = Solar.R)) + geom_point() library(naniar) # using geom_miss_point() ggplot(airquality, aes(x = Ozone, y = Solar.R)) + geom_miss_point() # Facets! ggplot(airquality, aes(x = Ozone, y = Solar.R)) + geom_miss_point() + facet_wrap(~Month) # Themes ggplot(airquality, aes(x = Ozone, y = Solar.R)) + geom_miss_point() + theme_dark()
Here are some function that provide quick summaries of missingness in your data, they all start with gg_miss_ - so that they are easy to remember and tab-complete.
gg_miss_varThis plot shows the number of missing values in each variable in a dataset. It is powered by the miss_var_summary() function.
gg_miss_var(airquality) library(ggplot2) gg_miss_var(airquality) + labs(y = "Look at all the missing ones")
If you wish, you can also change whether to show the % of missing instead with show_pct = TRUE.
gg_miss_var(airquality, show_pct = TRUE)
You can also plot the number of missings in a variable grouped by another variable using the facet argument.
gg_miss_var(airquality, facet = Month)
gg_miss_caseThis plot shows the number of missing values in each case. It is powered by the miss_case_summary() function.
gg_miss_case(airquality) gg_miss_case(airquality) + labs(x = "Number of Cases")
You can also order by the number of cases using order_cases = TRUE
gg_miss_case(airquality, order_cases = TRUE)
You can also explore the missingness in cases over some variable using facet = Month
gg_miss_case(airquality, facet = Month)
gg_miss_fctThis plot shows the number of missings in each column, broken down by a categorical variable from the dataset. It is powered by a dplyr::group_by statement followed by miss_var_summary().
gg_miss_fct(x = riskfactors, fct = marital) library(ggplot2) gg_miss_fct(x = riskfactors, fct = marital) + labs(title = "NA in Risk Factors and Marital status") # using group_by library(dplyr) riskfactors %>% group_by(marital) %>% miss_var_summary()
gg_miss_fct can also be used to explore missingness along time, like so:
gg_miss_fct(oceanbuoys, year) # to load who data library(tidyr) gg_miss_fct(who, year)
(Thanks to Maria Paula Caldas for inspiration for this visualisation, discussed here)
gg_miss_spanThis plot shows the number of missings in a given span, or breaksize, for a single selected variable. In this case we look at the span of hourly_counts from the pedestrian dataset. It is powered by the miss_var_span function
# data method miss_var_span(pedestrian, hourly_counts, span_every = 3000) gg_miss_span(pedestrian, hourly_counts, span_every = 3000) # works with the rest of ggplot gg_miss_span(pedestrian, hourly_counts, span_every = 3000) + labs(x = "custom") gg_miss_span(pedestrian, hourly_counts, span_every = 3000) + theme_dark()
You can also explore miss_var_span by group with the facet argument.
gg_miss_span(pedestrian, hourly_counts, span_every = 3000, facet = sensor_name)
gg_miss_case_cumsumThis plot shows the cumulative sum of missing values, reading the rows of the dataset from the top to bottom. It is powered by the miss_case_cumsum() function.
gg_miss_case_cumsum(airquality) library(ggplot2) gg_miss_case_cumsum(riskfactors, breaks = 50) + theme_bw()
gg_miss_var_cumsumThis plot shows the cumulative sum of missing values, reading columns from the left to the right of your dataframe. It is powered by the miss_var_cumsum() function.
gg_miss_var_cumsum(airquality)
gg_miss_whichThis plot shows a set of rectangles that indicate whether there is a missing element in a column or not.
gg_miss_which(airquality)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.